×

Identifying nonlinear dynamics with high confidence from sparse data. (English) Zbl 1536.37022

Summary: We introduce a novel procedure that, given sparse data generated from a stationary deterministic nonlinear dynamical system, can characterize specific local and/or global dynamic behavior with rigorous probability guarantees. More precisely, the sparse data is used to construct a statistical surrogate model based on a Gaussian process (GP). The dynamics of the surrogate model is interrogated using combinatorial methods and characterized using algebraic topological invariants (Conley index). The GP predictive distribution provides a lower bound on the confidence that these topological invariants, and hence the characterized dynamics, apply to the unknown dynamical system (assumed to be a sample path of the GP). The focus of this paper is on explaining the ideas, thus we restrict our examples to one-dimensional systems and show how to capture the existence of fixed points, periodic orbits, connecting orbits, bistability, and chaotic dynamics.

MSC:

37B30 Index theory for dynamical systems, Morse-Conley indices
37M10 Time series analysis of dynamical systems
62R40 Topological data analysis
68T09 Computational aspects of data analysis and big data

Software:

GitHub

References:

[1] Alvarado, E., Krishnamoorthy, B., and Vixie, K. R., Geometry of a Set and Its Random Covers, preprint, https://arxiv.org/pdf/2112.14979.pdf, 2021.
[2] Batko, B., Mischaikow, K., Mrozek, M., and Przybylski, M., Conley index approach to sampled dynamics, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 665-704, doi:10.1137/19M1254404. · Zbl 1442.37088
[3] Bush, J., Cowan, W., Harker, S., and Mischaikow, K., Conley-Morse databases for the angular dynamics of Newton’s method on the plane, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 736-766, doi:10.1137/15M1017971. · Zbl 1338.37004
[4] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to Algorithms, 3rd ed., MIT Press, Cambridge, MA, 2009. · Zbl 1187.68679
[5] Cressie, N. A., Statistics for Spatial Data, Wiley, New York, 1993.
[6] Day, S. and Frongillo, R., Sofic shifts via Conley index theory: Computing lower bounds on recurrent dynamics for maps, SIAM J. Appl. Dyn. Syst., 18 (2019), pp. 1610-1642, doi:10.1137/18M1192007. · Zbl 1436.37018
[7] Day, S., Junge, O., and Mischaikow, K., A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems, SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 117-160, doi:10.1137/030600210. · Zbl 1059.37068
[8] De Freitas, N., Smola, A. J., and Zoghi, M., Exponential regret bounds for Gaussian process bandits with deterministic observations, in Proceedings of the 29th International Conference on Machine Learning, ICML’12, , Omnipress, Madison, WI, 2012, pp. 955-962.
[9] Foreman, M., Rudolph, D. J., and Weiss, B., The conjugacy problem in ergodic theory, Ann. of Math. (2), 173 (2011), pp. 1529-1586, doi:10.4007/annals.2011.173.3.7. · Zbl 1243.37006
[10] Furrer, R. and Genton, M. G., Aggregation-cokriging for highly multivariate spatial data, Biometrika, 98 (2011), pp. 615-631. · Zbl 1230.62127
[11] Gameiro, M. and Harker, S., CMGDB: Conley Morse Graph Database, 2022, https://github.com/marciogameiro/CMGDB.
[12] Ghosal, S. and Roy, A., Posterior consistency of Gaussian process prior for nonparametric binary regression, Ann. Statist., 34 (2006), pp. 2413-4929. · Zbl 1106.62039
[13] Gramacy, R., Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences, Chapman & Hall/CRC, Boca Raton, FL, 2020.
[14] Harker, S., Kokubu, H., Mischaikow, K., and Pilarczyk, P., Inducing a map on homology from a correspondence, Proc. Amer. Math. Soc., 144 (2016), pp. 1787-1801, doi:10.1090/proc/12812. · Zbl 1337.55006
[15] Hatcher, A., Algebraic Topology, Cambridge University Press, Cambridge, 2002. · Zbl 1044.55001
[16] Kalies, W. D., Mischaikow, K., and Vandervorst, R., Lattice structures for attractors II, Found. Comput. Math., 1 (2015), pp. 1-41.
[17] Kalies, W. D., Mischaikow, K., and Vandervorst, R., Lattice structures for attractors III, J. Dynam. Differential Equations, 34 (2022), pp. 1729-1768, doi:10.1007/s10884-021-10056-8. · Zbl 1504.37018
[18] Gratiet, L. Le and Cannamela, C., Cokriging-based sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes, Technometrics, 57 (2015), pp. 418-427.
[19] Lee, M. and Owen, A., Single nugget kriging, Statist. Sinica, 28 (2018), pp. 649-669. · Zbl 1390.62189
[20] Lefschetz, S., Algebraic Topology, , American Mathematical Soc., 1942. · Zbl 0061.39302
[21] Mischaikow, K. and Mrozek, M., Conley index, in Handbook of Dynamical Systems, Vol. 2, Fiedler, B., ed., North-Holland, Amsterdam, 2002, pp. 393-460, doi:10.1016/S1874-575X(02)80030-3. · Zbl 0982.37002
[22] Santner, T. J., Williams, B. J., and Notz, W. I., The Design and Analysis of Computer Experiments, 2nd ed., Springer, New York, 2018. · Zbl 1405.62110
[23] Stein, M., Interpolation of Spatial Data: Some Theory for Kriging, , Springer, New York, 1999. · Zbl 0924.62100
[24] Vieira, E., Granados, E., Sivaramakrishnan, A., Gameiro, M., Mischaikow, K., and Bekris, K. E., Morse graphs: Topological tools for analyzing the global dynamics of robot controllers, in Algorithmic Foundations of Robotics XV, WAFR 2022, , LaValle, S. M., et al., eds., Springer, Cham, 2022, pp. 436-453.
[25] Vieira, E., Sivaramakrishnan, A., Song, Y., Granados, E., Gameiro, M., Mischaikow, K., Hung, Y., and Bekris, K. E., Data-efficient characterization of the global dynamics of robot controllers with confidence guarantees, in Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), , London, 2023, pp. 3065-3072.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.