×

Sofic shifts via Conley index theory: computing lower bounds on recurrent dynamics for maps. (English) Zbl 1436.37018

The authors provide an algorithm using discrete Conley index theory to construct sofic shifts that are topologically semiconjugate to discrete-time systems governed by maps. The technique is applied to several examples including the two-dimensional Hénon map, the three-dimensional LPA map (a Larvae-Pupae-Adult model describing the evolution of a population of flour beetles), and the Kot-Schaffer map [M. Kot and W. M. Schaffer, Math. Biosci. 80, 109–136 (1986; Zbl 0595.92011)].
Lower bounds on the topological entropy are obtained: for the Hénon map this is at least 0,4555, for the LPA is at least 0,1203 and for K-S map is 0,2406.
Several computational problems are discussed and the presented algorithm is better than the one from the previous paper by the present authors and R. Trevino [SIAM J. Appl. Dyn. Syst. 7, No. 4, 1477–1506 (2008; Zbl 1171.37011)].
It is worth to say that the approach used here is based on the works [A. Szymczak, Fundam. Math. 148, No. 1, 71–90 (1995; Zbl 0855.54051); J. Kwapisz, Ergodic Theory Dyn. Syst. 24, No. 4, 1173–1197 (2004; Zbl 1071.37010)].

MSC:

37B30 Index theory for dynamical systems, Morse-Conley indices
37B10 Symbolic dynamics
37B40 Topological entropy
37B20 Notions of recurrence and recurrent behavior in topological dynamical systems
Full Text: DOI

References:

[1] Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems, SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 757-789, https://doi.org/10.1137/080734935. · Zbl 1186.37021
[2] M. Boyle, B. Kitchens, and B. Marcus, A note on minimal covers for sofic systems, Proc. Amer. Math. Soc., 95 (1985), pp. 403-411. · Zbl 0606.28016
[3] R. Bowen, Periodic points and measures for Axiom \(A\) diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), pp. 377-397. · Zbl 0212.29103
[4] M. Boyle, Algebraic aspects of symbolic dynamics, Topics in Symbolic Dynamics and Applications (Temuco, 1997), London Math. Soc. Lecture Note Ser. 279, Cambridge Univ. Press, Cambridge, 2000, pp. 57-88. · Zbl 0967.37008
[5] P. Collins, Dynamics of surface diffeomorphisms relative to homoclinic and heteroclinic orbits, Dyn. Syst., 19 (2004), pp. 1-39. · Zbl 1042.37030
[6] P. Collins, Entropy-minimizing models of surface diffeomorphisms relative to homoclinic and heteroclinic orbits, Dyn. Syst., 20 (2005), pp. 369-400. · Zbl 1122.37032
[7] C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics 38, American Mathematical Society, Providence, RI, 1978. · Zbl 0397.34056
[8] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989. · Zbl 0695.58002
[9] S. Day, R. Frongillo, and R. Trevin͂o, Algorithms for rigorous entropy bounds and symbolic dynamics, SIAM J. Appl. Dyn. Syst., 7 (2008), pp. 1477-1506, https://doi.org/10.1137/070688080. · Zbl 1171.37011
[10] S. Day, O. Junge, and K. Mischaikow, A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems, SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 117-160, https://doi.org/10.1137/030600210. · Zbl 1059.37068
[11] S. Day, O. Junge, and K. Mischaikow, Towards automated chaos verification, Equadiff 2003, World Sci. Publ., Hackensack, NJ, 2005, pp. 157-162. · Zbl 1102.37027
[12] S. Day and W. D. Kalies, Rigorous computation of the global dynamics of integrodifference equations with smooth nonlinearities, SIAM J. Numer. Anal., 51 (2013), pp. 2957-2983, https://doi.org/10.1137/120903129. · Zbl 1288.37030
[13] R. Frongillo, Topological entropy bounds for hyperbolic plateaus of the Hénon map, SIAM Undergraduate Research Online, 7 (2014), pp. 142-161.
[14] R. Frongillo, Optimal state amalgamation is NP-hard, Ergodic Theory Dynam. Systems, 39 (2019), pp. 1857-1869. · Zbl 1420.37006
[15] R. Frongillo and R. Trevin͂o, Efficient automation of index pairs in computational Conley index theory, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 82-109, https://doi.org/10.1137/100808587. · Zbl 1243.37015
[16] Z. Galias, Obtaining rigorous bounds for topological entropy for discrete time dynamical systems, in Proceedings of the International Symposium on Nonlinear Theory and Its Applications, NOLTA’02 (Xi’an, PRC), 2002, pp. 619-622.
[17] J. Hopcroft, An \(n log n\) Algorithm for Minimizing States in a Finite Automaton, Theory of Machines and Computations, Academic Press, New York, 1971, pp. 189-196. · Zbl 0293.94022
[18] N. Jonoska, Sofic shifts with synchronizing presentations, Theoret. Comput. Sci., 158 (1996), pp. 81-115. · Zbl 0871.68137
[19] T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homology, Appl. Math. Sci. 157, Springer-Verlag, New York, 2004. · Zbl 1039.55001
[20] W. D. Kalies, K. Mischaikow, and R. C. A. M. Vandervorst, Lattice structures for attractors I, J. Comput. Dyn., 1 (2014), pp. 307-338. · Zbl 1346.37013
[21] W. D. Kalies, K. Mischaikow, and R. C. A. M. Vandervorst, Lattice structures for attractors II, Found. Comput. Math., 16 (2016), pp. 1151-1191. · Zbl 1373.37039
[22] M. Kot and W. M. Schaffer, Discrete-time growth-dispersal models, Math. Biosci., 80 (1986), pp. 109-136. · Zbl 0595.92011
[23] J. Kwapisz, Cocyclic subshifts, Math. Z., 234 (2000), pp. 255-290. · Zbl 0976.37003
[24] J. Kwapisz, Transfer operator, topological entropy and maximal measure for cocyclic subshifts, Ergodic Theory Dynam. Systems, 24 (2004), pp. 1173-1197. · Zbl 1071.37010
[25] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995. · Zbl 1106.37301
[26] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: A computer-assisted proof, Bull. Amer. Math. Soc. (N.S.), 32 (1995), pp. 66-72. · Zbl 0820.58042
[27] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: A computer assisted proof. II. Details, Math. Comp., 67 (1998), pp. 1023-1046. · Zbl 0913.58038
[28] K. Mischaikow and M. Mrozek, Conley index, Handbook of Dynamical Systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 393-460. · Zbl 1035.37010
[29] K. Mischaikow, M. Mrozek, and A. Szymczak, Chaos in the Lorenz equations: a computer assisted proof. III. Classical parameter values, J. Differential Equations, 169 (2001), pp. 17-56. · Zbl 0979.37015
[30] S. Newhouse, M. Berz, J. Grote, and K. Makino, On the estimation of topological entropy on surfaces, Contemp. Math. 469, Amer. Math. Soc., Providence, RI, 2008, pp. 243-270. · Zbl 1154.37009
[31] C. Robinson, Dynamical Systems, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. · Zbl 0853.58001
[32] J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynam. Systems, 8* (1988), pp. 375-393, Charles Conley Memorial Issue. · Zbl 0682.58040
[33] A. Szymczak, The Conley index for decompositions of isolated invariant sets, Fund. Math., 148 (1995), pp. 71-90. · Zbl 0855.54051
[34] A. Szymczak, A combinatorial procedure for finding isolating neighbourhoods and index pairs, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), pp. 1075-1088. · Zbl 0882.54032
[35] I. Ugarcovici and H. Weiss, Chaotic dynamics of a nonlinear density dependent population model, Nonlinearity, 17 (2004), pp. 1689-1711. · Zbl 1066.37020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.