×

Tangential cone condition for the full waveform forward operator in the viscoelastic regime: the nonlocal case. (English) Zbl 1536.35371

Summary: We discuss mapping properties of the parameter-to-state map of full waveform inversion and generalize the results of M. Eller and A. Rieder [Inverse Probl. 37, No. 8, Article ID 085011, 17 p. (2021; Zbl 1486.65149)] from the acoustic to the viscoelastic wave equation. In particular, we establish injectivity of the Fréchet derivative of the parameter-to-state map for a semidiscrete seismic inverse problem in the viscoelastic regime. Here the finite-dimensional parameter space is restricted to functions having global support in the propagation medium (the nonlocal case) and that are locally linearly independent. As a consequence, we deduce local conditional well-posedness of this nonlinear inverse problem. Furthermore, we show that the tangential cone condition holds, which is an essential prerequisite in the convergence analysis of a variety of inversion algorithms for nonlinear ill-posed problems.

MSC:

35R30 Inverse problems for PDEs
35L45 Initial value problems for first-order hyperbolic systems
35R09 Integro-partial differential equations
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization

Citations:

Zbl 1486.65149
Full Text: DOI

References:

[1] Alessandrini, G., de Hoop, M. V., Faucher, F., Gaburro, R., and Sincich, E., Inverse problem for the Helmholtz equation with Cauchy data: Reconstruction with conditional well-posedness driven iterative regularization, ESAIM Math. Model. Numer. Anal., 53 (2019), pp. 1005-1030, doi:10.1051/m2an/2019009. · Zbl 1418.65164
[2] Alessandrini, G. and Vessella, S., Lipschitz stability for the inverse conductivity problem, Adv. in Appl. Math., 35 (2005), pp. 207-241, doi:10.1016/j.aam.2004.12.002. · Zbl 1095.35058
[3] Beretta, E., de Hoop, M. V., Faucher, F., and Scherzer, O., Inverse boundary value problem for the Helmholtz equation: Quantitative conditional Lipschitz stability estimates, SIAM J. Math. Anal., 48 (2016), pp. 3962-3983, doi:10.1137/15M1043856. · Zbl 1351.35258
[4] Beretta, E., de Hoop, M. V., Francini, E., Vessella, S., and Zhai, J., Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves, Inverse Problems, 33 (2017), 035013, doi:10.1088/1361-6420/aa5bef. · Zbl 1372.35356
[5] Beretta, E., de Hoop, M. V., and Qiu, L., Lipschitz stability of an inverse boundary value problem for a Schrödinger-type equation, SIAM J. Math. Anal., 45 (2013), pp. 679-699, doi:10.1137/120869201. · Zbl 1302.35429
[6] Blanch, J. O., Robertsson, J. O. A., and Symes, W. W., Modeling of a constant Q: Methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique, Geophysics, 60 (1995), pp. 176-184, doi:10.1190/1.1443744.
[7] Bohlen, T., Viskoelastische FD-Modellierung seismischer Wellen zur Interpretation gemessener Seismogramme, Ph.D. thesis, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 1998, https://bit.ly/2LM0SWr.
[8] Bohlen, T., Parallel 3-D viscoelastic finite difference seismic modelling, Comput. Geosci., 28 (2002), pp. 887-899, doi:10.1016/S0098-3004(02)00006-7.
[9] Bohlen, T., Fernandez, M. R., Ernesti, J., Rheinbay, C., Rieder, A., and Wieners, C., Visco-acoustic full waveform inversion: From a DG forward solver to a Newton-CG inverse solver, Comput. Math. Appl., 100 (2021), pp. 126-140, doi:10.1016/j.camwa.2021.09.001. · Zbl 1524.65474
[10] Ciarlet, P. G., Mathematical Elasticity Volume I: Three-Dimensional Elasticity, , North-HollandAmsterdam, 1988. · Zbl 0648.73014
[11] Dafermos, C. M., An abstract Volterra equation with applications to linear viscoelasticity, J. Differential Equations, 7 (1970), pp. 554-569, doi:10.1016/0022-0396(70)90101-4. · Zbl 0212.45302
[12] de Hoop, M. V., Lin, C.-L., and Nakamura, G., Holmgren-John unique continuation theorem for viscoelastic systems, in Time-Dependent Problems in Imaging and Parameter Identification, Springer, Cham, pp. 287-301, 2021, doi:10.1007/978-3-030-57784-1_10. · Zbl 1487.35361
[13] de Hoop, M. V., Qiu, L., and Scherzer, O., Local analysis of inverse problems: Hölder stability and iterative reconstruction, Inverse Problems, 28 (2012), 045001, doi:10.1088/0266-5611/28/4/045001. · Zbl 1319.47049
[14] Dörfler, W. and Wieners, C., Space-time approximations for linear acoustic, elastic, and electro-magnetic wave equations, in Wave Phenomena: Mathematical Analysis and Numerical Approximation, , Birkhäuser, Cham, 2023, pp. 3-69, https://link.springer.com/book/9783031057946.
[15] Duvaut, G. and Lions, J.-L., Inequalities in Mechanics and Physics, , Springer-Verlag, Berlin, New York, 1976. · Zbl 0331.35002
[16] Egger, H. and Hofmann, B., Tikhonov regularization in Hilbert scales under conditional stability assumptions, Inverse Problems, 34 (2018), 115015, doi:10.1088/1361-6420/aadef4. · Zbl 1415.65130
[17] Eller, M., Griesmaier, R., and Rieder, A., Tangential Cone Condition for the Full Waveform Forward Operator in the Elastic Regime: The Non-local Case, CRC 1173 preprint; 2022/48, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2022, doi:10.5445/IR/1000150845.
[18] Eller, M., Honda, N., Lin, C.-L., and Nakamura, G., Global unique continuation from the boundary for a system of viscoelasticity with analytic coefficients and a memory term, Inverse Probl. Imaging, 16 (2022), pp. 1529-1542, doi:10.3934/ipi.2022049. · Zbl 1512.35133
[19] Eller, M. and Rieder, A., Tangential cone condition and Lipschitz stability for the full waveform forward operator in the acoustic regime, Inverse Problems, 37 (2021), 085011, doi:10.1088/1361-6420/ac11c5. · Zbl 1486.65149
[20] Engl, H. W., Hanke, M., and Neubauer, A., Regularization of Inverse Problems, Math. Appl.375, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996. · Zbl 0859.65054
[21] Epanomeritakis, I., Akçelik, V., Ghattas, O., and Bielak, J., A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion, Inverse Problems, 24 (2008), 034015, doi:10.1088/0266-5611/24/3/034015. · Zbl 1142.65052
[22] Fichtner, A., Full Seismic Waveform Modelling and Inversion, , Springer-Verlag, Berlin, Heidelberg, 2011, doi:10.1007/978-3-642-15807-0.
[23] Hanke, M., Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems, Numer. Funct. Anal. Optim., 18 (1997), pp. 971-993, doi:10.1080/01630569708816804. · Zbl 0899.65038
[24] Hanke, M., Neubauer, A., and Scherzer, O., A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), pp. 21-37, doi:10.1007/s002110050158. · Zbl 0840.65049
[25] Harrach, B., Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes, Inverse Problems, 35 (2019), 024005, doi:10.1088/1361-6420/aaf6fc. · Zbl 1491.92080
[26] Ito, K. and Kappel, F., Evolution Equations and Approximations, , World Scientific, River Edge, NJ, 2002, doi:10.1142/9789812777294. · Zbl 1014.34045
[27] Kaltenbacher, B., Regularization based on all-at-once formulations for inverse problems, SIAM J. Numer. Anal., 54 (2016), pp. 2594-2618, doi:10.1137/16M1060984. · Zbl 1347.65104
[28] Kaltenbacher, B. and de Souza, M. L. P., Convergence and adaptive discretization of the IRGNM Tikhonov and the IRGNM Ivanov method under a tangential cone condition in Banach space, Numer. Math., 140 (2018), pp. 449-478, doi:10.1007/s00211-018-0971-5. · Zbl 1416.65160
[29] Kaltenbacher, B., Neubauer, A., and Scherzer, O., Iterative Regularization Methods for Nonlinear Ill-Posed Problems, , Walter de Gruyter, Berlin, 2008, doi:10.1515/9783110208276. · Zbl 1145.65037
[30] Kaltenbacher, B., Nguyen, T. T. N., and Scherzer, O., The tangential cone condition for some coefficient identification model problems in parabolic PDEs, in Time-Dependent Problems in Imaging and Parameter Identification, Springer, Cham, 2021, pp. 121-163, doi:10.1007/978-3-030-57784-1_5. · Zbl 1487.35343
[31] Kaltenbacher, B., Schöpfer, F., and Schuster, T., Iterative methods for nonlinear ill-posed problems in Banach spaces: Convergence and applications to parameter identification problems, Inverse Problems, 25 (2009), 065003, doi:10.1088/0266-5611/25/6/065003. · Zbl 1176.65070
[32] Kaltenbacher, B., Schuster, T., and Wald, A., Time-Dependent Problems in Imaging and Parameter Identification, Springer, Cham, 2021, doi:10.1007/978-3-030-57784-1. · Zbl 1471.65006
[33] Kirsch, A. and Rieder, A., Inverse problems for abstract evolution equations with applications in electrodynamics and elasticity, Inverse Problems, 32 (2016), 085001, doi:10.1088/0266-5611/32/8/085001. · Zbl 1416.65164
[34] Kirsch, A. and Rieder, A., Inverse problems for abstract evolution equations II: Higher order differentiability for viscoelasticity, SIAM J. Appl. Math., 79 (2019), pp. 2639-2662, doi:10.1137/19M1269403. Corrigendum under doi:10.48550/arXiv.2203.01309. · Zbl 1427.35361
[35] Kress, R., Linear Integral Equations, 3rd ed., , Springer, New York, 2014, doi:10.1007/978-1-4614-9593-2. · Zbl 1328.45001
[36] Lechleiter, A. and Rieder, A., Newton regularizations for impedance tomography: Convergence by local injectivity, Inverse Problems, 24 (2008), 065009, doi:10.1088/0266-5611/24/6/065009. · Zbl 1152.35516
[37] Métivier, L., Brossier, R., Virieux, J., and Operto, S., Full waveform inversion and the truncated Newton method, SIAM J. Sci. Comput., 35 (2013), pp. B401-B437, doi:10.1137/120877854. · Zbl 1266.86002
[38] Pieronek, L. and Rieder, A., On the iterative regularization of non-linear illposed problems in \(L^\infty \), Numer. Math., 154 (2023), pp. 209-247, doi:10.1007/s00211-023-01359-7. · Zbl 1521.65047
[39] Rieder, A., Inexact Newton regularization using conjugate gradients as inner iteration, SIAM J. Numer. Anal., 43 (2005), pp. 604-622, doi:10.1137/040604029. · Zbl 1092.65047
[40] Robertsson, J. O., Blanch, J. O., and Symes, W. W., Viscoelastic finite-difference modeling, Geophysics, 59 (1994), pp. 1444-1456, doi:10.1190/1.1443701.
[41] Scherzer, O., The use of Morozov’s discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems, Computing, 51 (1993), pp. 45-60, doi:10.1007/BF02243828. · Zbl 0801.65053
[42] Schuster, T., Kaltenbacher, B., Hofmann, B., and Kazimierski, K. S., Regularization Methods in Banach Spaces, , Walter de Gruyter, Berlin, 2012, doi:10.1515/9783110255720. · Zbl 1259.65087
[43] Tarantola, A., Theoretical background for the inversion of seismic waveforms including elasticity and attenuation, Pure Appl. Geophys., 128 (1988), pp. 365-399, doi:10.1007/BF01772605.
[44] Virieux, J. and Operto, S., An overview of full-waveform inversion in exploration geophysics, Geophysics, 74 (2009), pp. WCC1-WCC26, doi:10.1190/1.3238367.
[45] Yang, P., Brossier, R., Métivier, L., Virieux, J., and Zhou, W., A time-domain preconditioned truncated Newton approach to visco-acoustic multiparameter full waveform inversion, SIAM J. Sci. Comput., 40 (2018), pp. B1101-B1130, doi:10.1137/17M1126126. · Zbl 1394.65045
[46] Zeltmann, U., The Viscoelastic Seismic Model: Existence, Uniqueness and Differentiability with Respect to Parameters, Ph.D. thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2018, doi:10.5445/IR/1000093989.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.