×

Regularization based on all-at-once formulations for inverse problems. (English) Zbl 1347.65104

Summary: Parameter identification problems typically consist of a model equation, e.g., a (system of) ordinary or partial differential equation(s), and the observation equation. In the conventional reduced setting, the model equation is eliminated via the parameter-to-state map. Alternatively, one might consider both sets of equations (model and observations) as one large system, to which some regularization method is applied. The choice of the formulation (reduced or all-at-once) can make a large difference computationally, depending on which regularization method is used: Whereas almost the same optimality system arises for the reduced and the all-at-once Tikhonov method, the situation is different for iterative methods, especially in the context of nonlinear models. In this paper we will exemplarily provide some convergence results for all-at-once versions of variational, Newton type, and gradient based regularization methods. Moreover we will compare the implementation requirements for the respective all-at-once and reduced versions and provide some numerical comparison.

MSC:

65J22 Numerical solution to inverse problems in abstract spaces
35R30 Inverse problems for PDEs
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs

References:

[1] A. Bakushinskii, {\it The problem of the convergence of the iteratively regularized Gauß-Newton method}, Comput. Math. Math. Phys., 32 (1992), pp. 1353-1359. · Zbl 0783.65052
[2] A. Bakushinsky and M. Kokurin, {\it Iterative Methods for Approximate Solution of Inverse Problems}, Math. Appl. 577, Springer, Dordrecht, 2004. · Zbl 1070.65038
[3] M. Burger and W. Mühlhuber, {\it Iterative regularization of parameter identification problems by sequential quadratic programming methods}, Inverse Probl., 18 (2002), pp. 943-969. · Zbl 1005.65124
[4] M. Burger and W. Mühlhuber, {\it Numerical approximation of an SQP-type method for parameter identification}, SIAM J. Numer. Anal., 40 (2002), pp. 1775-1797. · Zbl 1035.65117
[5] H. Engl, K. Kunisch, and A. Neubauer, {\it Convergence rates for Tikhonov regularisation of non-linear ill-posed problems}, Inverse Probl., 5 (1989), pp. 523-540. · Zbl 0695.65037
[6] H. W. Engl, M. Hanke, and A. Neubauer, {\it Regularization of Inverse Problems}, Kluwer Academic Publishers, Dordrecht, 1996. · Zbl 0859.65054
[7] J. Flemming, {\it Generized Tikhonov Regularization: Basic Theory and Comprehensive Results on Convergence Rates}, Ph.D. thesis, TU Chemnitz, 2011, http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-78152.
[8] E. Haber and U. M. Ascher, {\it Preconditioned all-at-once methods for large, sparse parameter estimation problems}, Inverse Probl., 17 (2001), pp. 1847-1864. · Zbl 0995.65110
[9] M. Hanke, A. Neubauer, and O. Scherzer, {\it A convergence analysis of the Landweber iteration for nonlinear ill-posed problems}, Numer. Math., 72 (1995), pp. 21-37. · Zbl 0840.65049
[10] B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer, {\it A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators}, Inverse Probl., 23 (2007), pp. 987-1010. · Zbl 1131.65046
[11] T. Hohage and F. Werner, {\it Iteratively regularized Newton methods with general data misfit functionals and applications to Poisson data}, Numer. Math., 123 (2013), pp. 745-779. · Zbl 1280.65047
[12] B. Kaltenbacher, {\it Some Newton type methods for the regularization of nonlinear ill-posed problems}, Inverse Probl., 13 (1997), pp. 729-753. · Zbl 0880.65033
[13] B. Kaltenbacher and B. Hofmann, {\it Convergence rates for the iteratively regularized Gauss-Newton method in Banach spaces}, Inverse Probl., 26 (2010), 035007. · Zbl 1204.65060
[14] B. Kaltenbacher, A. Kirchner, and B. Vexler, {\it Goal oriented adaptivity in the IRGNM for parameter identification in PDEs II:}{\it All-at once formulations}, Inverse Probl., 30 (2014), 045002. · Zbl 1304.65154
[15] B. Kaltenbacher, A. Neubauer, and O. Scherzer, {\it Iterative Regularization Methods for Nonlinear Ill-Posed Problems}, Radon Ser. Comput. Appl. Math. 6, Walter de Gruyter, Berlin, 2008. · Zbl 1145.65037
[16] B. Kaltenbacher, F. Schöpfer, and T. Schuster, {\it Convergence of some iterative methods for the regularization of nonlinear ill-posed problems in Banach spaces}, Inverse Probl., 25 (2009), 065003, doi:10.1088/0266-5611/25/6/065003. · Zbl 1176.65070
[17] A. Kirsch, {\it An Introduction to the Mathematical Theory of Inverse Problems}, Springer, New York, 1996. · Zbl 0865.35004
[18] J. Nocedal and S. Wright, {\it Numerical Optimization}, Springer Series in Operations Research and Financial Engineering, Springer New York, 2006. · Zbl 1104.65059
[19] C. Pöschl, {\it Tikhonov regularization with general residual term}, Ph.D. thesis, University of Innsbruck, 2008.
[20] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen, {\it Variational Methods in Imaging}, Springer, New York, 2008. · Zbl 1177.68245
[21] T. Schuster, B. Kaltenbacher, B. Hofmann, and K. Kazimierski, {\it Regularization Methods in Banach Spaces}, Walter Radon Series on Computational and Applied Mathematics, de Gruyter, Berlin, 2012. · Zbl 1259.65087
[22] F. Tröltzsch, {\it Optimal Control of Partial Differential Equations}, Theory Methods Appl. 112. American Mathematical Society, Providence, RI, 2010. Translated from the 2005 German original by Jürgen Sprekels. · Zbl 1195.49001
[23] T. van Leeuwen and F. J. Herrmann, {\it A penalty method for PDE-constrained optimization in inverse problems}, Inverse Probl., 32 (2016), 015007, http://stacks.iop.org/0266-5611/32/i=1/a=015007. · Zbl 1410.49029
[24] C. R. Vogel, {\it Computational Methods for Inverse Problems}, SIAM, Philadelphia, 2002. · Zbl 1008.65103
[25] F. Werner, {\it Inverse problems with Poisson data: Tikhonov-type regularization and iteratively regularized Newton methods}, Ph. D. thesis, University of Göttingen, 2012, http://num.math.uni-goettingen.de/ f.werner/files/diss_frank_werner.pdf. · Zbl 1252.65079
[26] F. Werner, {\it On convergence rates for iteratively regularized Newton-type methods under a Lipschitz-type nonlinearity condition}, J. Inverse Ill-Posed Probl., 23 (2015), pp. 75-84. · Zbl 1308.65084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.