×

Tangent spaces of orbit closures for representations of Dynkin quivers of type \(\mathbb{D}\). (English) Zbl 1536.14037

Let \(k\) be an algebraically closed field, \(Q\) a finite quiver, and denote by \(\mathrm{rep}_d(Q)\) the affine \(k\)-scheme of representations of \(Q\) with a fixed dimension vector \(d\). Given such a representation \(M\) of \(Q\), the set of \(k\)-points in \(\mathrm{rep}_d(Q)\) isomorphic as representations to \(M\) is an orbit \(\mathcal{O}_M\) under an action of a product of general linear groups. The aim of this paper is to describe “in representation theoretic terms” the tangent space to this orbit when \(Q\) is a Dynkin quiver of type \(D\).
The description of the tangent space goes via another affine subscheme \(\mathcal{C}_M\) of \(\mathrm{rep}_d(Q)\). This subscheme is defined by suitable rank conditions associated to \(M\), which makes it easy to describe in representation-theoretic terms, and for all Dynkin and extended Dynkin quivers, \(\mathcal{O}_M\) is the reduced scheme associated to \(\mathcal{C}_M\).

MSC:

14L30 Group actions on varieties or schemes (quotients)
16G20 Representations of quivers and partially ordered sets
14B05 Singularities in algebraic geometry

References:

[1] Abeasis, S.; Del Fra, A., Degenerations for the representations of an equioriented quiver of type Am, Boll. Un. Mat. Ital. Suppl., 2, 157-171 (1980) · Zbl 0449.16024
[2] Auslander, M.; Reiten, I.; Smalø, SO, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., vol. 36 (1995), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0834.16001 · doi:10.1017/CBO9780511623608
[3] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. vol. 1, London Math. Soc. Stud. Texts, vol. 65, Cambridge Univ. Press, Cambridge (2006) · Zbl 1092.16001
[4] Bongartz, K., Degenerations for representations of tame quivers, Ann. Sci. École Norm. Sup. (4), 28, 5, 647-668 (1995) · Zbl 0844.16007 · doi:10.24033/asens.1728
[5] Bongartz, K., On degenerations and extensions of finite-dimensional modules, Adv. Math., 121, 2, 245-287 (1996) · Zbl 0862.16007 · doi:10.1006/aima.1996.0053
[6] Demazure, M., Gabriel, P.: Introduction to Algebraic Geometry and Algebraic Groups, North-Holland Math. Stud. vol., 39, North-Holland, Amsterdam-New York (1980) · Zbl 0431.14015
[7] Gabriel, P., Auslander-Reiten sequences and representation-finite algebras, Representation Theory, I, Lecture Notes in Math., vol. 831, 1-71 (1980), Berlin: Springer, Berlin · Zbl 0445.16023
[8] Happel, D., Triangulated Categories in the Representation Theory of Finite-dimensional Algebras, London Math. Soc. Lecture Note Ser., vol. 119 (1988), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0635.16017
[9] Hesselink, W., Singularities in the nilpotent scheme of a classical group, Trans. Amer. Math. Soc., 222, 1-32 (1976) · Zbl 0332.14017 · doi:10.1090/S0002-9947-1976-0429875-8
[10] Lakshmibai, V.; Magyar, P., Degeneracy schemes, quiver schemes, and Schubert varieties, Internat. Math. Res. Notices, 12, 627-640 (1998) · Zbl 0936.14001 · doi:10.1155/S1073792898000397
[11] Reiten, I.; Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc., 15, 2, 295-366 (2002) · Zbl 0991.18009 · doi:10.1090/S0894-0347-02-00387-9
[12] Riedtmann, Ch, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv., 55, 2, 199-224 (1980) · Zbl 0444.16018 · doi:10.1007/BF02566682
[13] Riedtmann, Ch, Degenerations for representations of quivers with relations, Ann. Sci. École Norm. Sup. (4), 19, 2, 275-301 (1986) · Zbl 0603.16025 · doi:10.24033/asens.1508
[14] Riedtmann, Ch; Zwara, G., Orbit closures and rank schemes, Comment. Math. Helv., 88, 1, 55-84 (2013) · Zbl 1266.14038 · doi:10.4171/CMH/278
[15] Ringel, CM, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., vol. 1099 (1984), Berlin: Springer, Berlin · Zbl 0546.16013
[16] Voigt, D., Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen, Lecture Notes in Math., vol. 592 (1977), Berlin: Springer, Berlin · Zbl 0374.14010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.