×

On the lack of compactness in the axisymmetric neo-Hookean model. (English) Zbl 1535.74027

The authors analyze the weak limit of sequences of regular axisymmetric maps having an equibounded neo-Hookean energy of the type: \(E(u)=\int_{\Omega }\left\vert Du\right\vert ^{2}+H(\det Du)dx\), where \(u:\Omega \rightarrow \mathbb{R}^{3}\) is the deformation field, \(\Omega \subset \mathbb{R}^{3}\) the reference configuration, and \(H:(0,+\infty )\rightarrow \lbrack 0,+\infty )\) a convex function satisfying \(\lim_{t\rightarrow +\infty }H(t)/t=\lim_{s\rightarrow 0}H(s)=+\infty \) and \(\int_{B(0,3)}(H(\det Du)dx<\infty \), under the assumption that these maps have finite surface energy. The set \(\Omega \subset \mathbb{R}^{3}\) is axisymmetric if \(\Omega =\cup _{x\in \Omega }(\partial B_{\mathbb{R}^{2}}((0,0),\left\vert (x_{1},x_{2})\right\vert )\times \{x_{3}\})\). A function \(u\in C(U,\mathbb{R} ^{3})\) satisfies the INV property in a bounded open set \(U\) in \(\mathbb{R} ^{3}\) if for every point \(x_{0}\in U\) and a.e. \(r\in (0,\mathrm{dist}(x_{0},\partial U))\), \(u(x)\in \mathrm{im}_{T}(u,B(x_{0},r))\) for a.e. \(x\in B(x_{0},r)\) and \( u(x)\notin \mathrm{im}_{T}(u,B(x_{0},r))\) for a.e. \(x\in \Omega \setminus B(x_{0},r)\), where \(\mathrm{im}_{T}(u,B(x_{0},r))=\{y\in \mathbb{R}^{3}\setminus u(\partial U):\deg (u,U,y)\neq 0\}\). The main result proves that if \(u\) is the \( H^{1}(B(0,3),\mathbb{R}^{3})\) axisymmetric map of S. Conti and C. De Lellis [Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 2, No. 3, 521–549 (2003; Zbl 1114.74004)], there exists a sequence of axisymmetric maps \( (u_{n})_{n}\subset H^{1}(B(0,3),\mathbb{R}^{3})\) such that \(u_{n}\) is bi-Lipschitz, for every \(n\in \mathbb{N}\); \(u_{n}\rightarrow u\) in \( H^{1}(B(0,3),\mathbb{R}^{3})\); \(u\) is one-to-one a.e., but it does not satisfy the INV property. Moreover, one has the equality \(\mathrm{Det} Du=(\det Du) \mathcal{L}^{3}+\frac{\pi }{6}(\delta _{(0,0,1)}-\delta _{(0,0,0)})\) and the divergence identities are not satisfied; \[\lim_{n\rightarrow \infty }\int_{B(0,3)}\left\vert Du_{n}\right\vert ^{2}dx=\int_{B(0,3)}\left\vert Du\right\vert ^{2}dx+2\pi ;\] \[\lim_{n\rightarrow \infty }\int_{B(0,3)}H(\det Du_{n})dx=\int_{B(0,3)}H(\det Du)dx;\] \(u_{3}^{-1}\) has SBV regularity, its jump set is the sphere \(\Gamma =\{(y_{1},y_{2},y_{3}):y_{1}^{2}+y_{2}^{2}+(y_{3}-\frac{1}{2})^{2}=\frac{1}{ 2^{2}}\}\), the amplitude of the jump is 1, and \(\left\Vert D^{s}u_{3}^{-1}\right\Vert =\pi \). The authors define \(\mathcal{A}=\{u\in H^{1}(\Omega ,\mathbb{R}^{3}):u=b \text{ in } \Omega \setminus \widetilde{\Omega }, \, u \text{ is one-to-one a.e., } \det Du>0 \text{ a.e., and } E(u)<+\infty \}\), \[\mathcal{A} ^{r}=\{u\in \mathcal{A}: \mathrm{Div}((\mathrm{adj} Du)g\circ u)=(\mathrm{div} g)\circ u\det Du, \, \forall g\in C_{c}^{1}(\mathbb{R}^{3},\mathbb{R} ^{3}\},\] and \(\mathcal{A}_{s}^{r}=\{u\in \mathcal{A}^{r}:u\) is axisymmetric\(\}\). The second main result proves that if \(u\notin \overline{ \mathcal{A}}_{s}^{r}\) is such that \(E(u)<+\infty \), there exists a countable set \(C(u)\) of points such that \[\mathrm{Det} Du=(\det Du)\mathcal{L}^{3}+\sum_{a\in C(u)}\mathrm{Det} Du(\{a\})\delta _{a};\] \(u^{-1}\in SBV(\Omega _{b},\mathbb{R}^{3})\). Let \(J_{u^{-1}}\) be the jump set of the inverse \(u^{-1}\), \((u^{-1})^{\pm }\) its lateral traces, and for \(\xi ,\xi ^{\prime }\in \mathbb{R}^{3}\) \(\Gamma _{\xi }^{\pm }=\{y\in J_{u^{-1}}:(u^{-1})^{\pm }(y)=\xi \}\), \(\Gamma _{\xi }=\Gamma _{\xi }^{+}\cup \Gamma _{\xi }^{-}\), \(\Gamma _{\xi ,\xi ^{\prime }}=\Gamma _{\xi }\cup \Gamma _{\xi ^{\prime }}\), \(\left\Vert D^{s}u^{-1}\right\Vert =\sum_{\xi ,\xi ^{\prime }\in C(u)}\left\vert \xi -\xi ^{\prime }\right\vert \mathcal{H}^{2}(\Gamma _{\xi ,\xi ^{\prime }})\); Let \(x\in \Omega \) and \(r>0\) be such that \(B(x,r)\subset \Omega \) and \(\deg(u,\partial B(x,r),\cdot )\) is well defined, and set \(\Delta _{x-r}=\deg(u,\partial B(x,r),\cdot )-\chi _{\mathrm{im}_{G}(u,B(x,r))}\). Then \(\Delta _{x-r}\in BV(\mathbb{R}^{3})\) and is integer-valued. There exists \(\Delta _{x}\in BV(\mathbb{R}^{3})\) integer-valued such that \(\Delta _{x-r_{n}}\rightarrow \Delta _{x}\) weakly\(^{\ast }\) in \(BV(\mathbb{R}^{3})\) for all sequences \(r_{n}\rightarrow 0\) such that \(\Delta _{x-r_{n}}\) is well defined; \(\Delta _{x}\neq 0\) if and only if \(x\in C(u)\); For \(\xi \in C(u)\), \(\Gamma _{\xi }=\cup _{k\in \mathbb{Z}}\partial ^{\ast }\{y\in \mathbb{R} ^{3}:\Delta _{\xi }(y)=k\}\) \(\mathcal{H}^{2}\)-a.e.; \(\sum_{\xi \in C(u)}\Delta _{\xi }=0\). For the proof, the authors define the surface energy \(\mathcal{E}\) to measure the creation of new surface of a deformation and the geometric and topological images of maps. They build the optimal recovery sequence. They also analyze the properties of maps in \(\overline{ \mathcal{A}}_{s}^{r}\) with finite surface energy.

MSC:

74B20 Nonlinear elasticity
35Q74 PDEs in connection with mechanics of deformable solids

Citations:

Zbl 1114.74004

References:

[1] Ambrosio, L., ‘A new proof of the SBV compactness theorem’, Calc. Var. Partial Differential Equations3 (1995), 127-137. · Zbl 0837.49011
[2] Ambrosio, L., Fusco, N. and Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems (Oxford University Press, New York, 2000). · Zbl 0957.49001
[3] Ball, J. M., ‘Convexity conditions and existence theorems in nonlinear elasticity’, Arch. Rational Mech. Anal.63 (1977), 337-403. · Zbl 0368.73040
[4] Ball, J. M., ‘Global invertibility of Sobolev functions and the interpenetration of matter’, Proc. Roy. Soc. Edinburgh Sect. A88 (1981), 315-328. · Zbl 0478.46032
[5] Ball, J. M., ‘Singularities and computation of minimizers for variational problems’, in Devore, R., Iserles, A. and Suli, E., eds., Foundations of Computational Mathematics (London Mathematical Society Lecture Note Series) vol. 284 (Cambridge University Press, 2001), 1-20. · Zbl 0978.65053
[6] Ball, J. M., ‘Progress and puzzles in nonlinear elasticity’, in Schröder, J. and Neff, P., eds., Poly-, Quasi- and Rank-One Convexity in Applied Mechanics (CISM International Centre for Mechanical Sciences) vol. 516 (Springer, Vienna, 2010).
[7] Barchiesi, M., ‘Toughening by crack deflection in the homogenization of brittle composites with soft inclusions’, Arch. Ration. Mech. Anal.227 (2018), 749-766. · Zbl 1387.35569
[8] Barchiesi, M., Henao, D. and Mora-Corral, C., ‘Local invertibility in Sobolev spaces with applications to nematic elastomers and magnetoelasticity’, Arch. Rational Mech. Anal.224 (2017), 743-816. · Zbl 1371.35284
[9] Barchiesi, M., Henao, D., Mora-Corral, C. and Rodiac, R., ‘Harmonic dipoles and the relaxation of the neo-Hookean energy in 3D elasticity’, Arch. Ration. Mech. Anal.247 (2023), Article No. 70. · Zbl 1521.74024
[10] Barchiesi, M., Henao, D., Mora-Corral, C. and Rodiac, R., ‘A relaxation approach to the minimisation of the neo-Hookean energy in 3D’, Preprint, 2023, arXiv:2311.02952.
[11] Bethuel, F. and Brezis, H., ‘Regularity of minimizers of relaxed problems for harmonic maps’, J. Funct. Anal.101 (1991), 145-161. · Zbl 0797.49034
[12] Bethuel, F., Brezis, H. and Coron, J.-M., ‘Relaxed energies for harmonic maps’, in Variational Methods (Progr. Nonlinear Differential Equations Appl.) vol. 4 (Birkhäuser Boston, Boston, MA, 1990), 37-52. · Zbl 0793.58011
[13] Bourdin, B., Francfort, G. A. and Marigo, J.-J., ‘The variational approach to fracture’, J. Elasticity91 (2008), 5-148. · Zbl 1176.74018
[14] Brezis, H., Coron, J.-M. and Lieb, E. H., ‘Harmonic maps with defects’, Comm. Math. Phys.107 (1986), 649-705. · Zbl 0608.58016
[15] Brezis, H. and Nirenberg, L., ‘Degree theory and BMO. I. Compact manifolds without boundaries’, Selecta Math. (N.S.)1 (1995), 197-263. · Zbl 0852.58010
[16] Conti, S. and De Lellis, C., ‘Some remarks on the theory of elasticity for compressible Neohookean materials’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)2 (2003), 521-549. · Zbl 1114.74004
[17] Dal Maso, G. and Iurlano, F., ‘Fracture models as Γ-limits of damage models’, Commun. Pure Appl. Anal.12 (2013), 1657-1686. · Zbl 1345.74097
[18] Deimling, K., Nonlinear Functional Analysis (Springer, Berlin, 1985). · Zbl 0559.47040
[19] Federer, H., Geometric Measure Theory (Springer, New York, 1969). · Zbl 0176.00801
[20] Focardi, M. and Iurlano, F., ‘Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity’, SIAM J. Math. Anal.46 (2014), 2936-2955. · Zbl 1301.49030
[21] Fonseca, I. and Gangbo, W., Degree Theory in Analysis and Applications (Oxford University Press, New York, 1995). · Zbl 0852.47030
[22] Francfort, G., ‘Variational fracture: twenty years after’, Int. J. Fract. (2021).
[23] Giaquinta, M., Modica, G. and Souček, J., ‘Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity’, Arch. Rational Mech. Anal.106 (1989), 97-159. · Zbl 0677.73014
[24] Giaquinta, M., Modica, G. and Souček, J., ‘The Dirichlet energy of mappings with values into the sphere’, Manuscripta Math.65 (1989), 489-507. · Zbl 0678.49006
[25] Giaquinta, M., Modica, G. and Souček, J., Cartesian Currents in the Calculus of Variations I.(Springer-Verlag, Berlin, 1998). · Zbl 0914.49001
[26] Giaquinta, M., Modica, G. and Souček, J., Cartesian Currents in the Calculus of Variations II.(Springer-Verlag, Berlin, 1998). · Zbl 0914.49002
[27] Hardt, R. and Lin, F.-H., ‘A remark on \({\text{H}}^1\) mappings’, Manuscripta Math. 56 (1986), 1-10. · Zbl 0618.58015
[28] Hardt, R., Lin, F.-H. and Poon, C.-C., ‘Axially symmetric harmonic maps minimizing a relaxed energy’, Comm. Pure Appl. Math.45 (1992), 417-459. · Zbl 0769.58013
[29] Henao, D. and Mora-Corral, C., ‘Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity’, Arch. Rational Mech. Anal.197 (2010), 619-655. · Zbl 1248.74006
[30] Henao, D. and Mora-Corral, C., ‘Fracture surfaces and the regularity of inverses for BV deformations’, Arch. Rational Mech. Anal.201 (2011), 575-629. · Zbl 1262.74007
[31] Henao, D. and Mora-Corral, C., ‘Lusin’s condition and the distributional determinant for deformations with finite energy’, Adv. Calc. Var.5 (2012), 355-409. · Zbl 1252.49016
[32] Henao, D. and Mora-Corral, C., ‘Regularity of inverses of Sobolev deformations with finite surface energy’, J. Funct. Anal.268 (2015), 2356-2378. · Zbl 1425.74017
[33] Henao, D., Mora-Corral, C. and Xu, X., ‘Γ-convergence approximation of fracture and cavitation in nonlinear elasticity’, Arch. Rational Mech. Anal.216 (2015), 813-879. · Zbl 1457.35081
[34] Henao, D. and Rodiac, R., ‘On the existence of minimizers for the neo-Hookean energy in the axisymmetric setting’, Discrete Con. Syn. Sist. Series A38 (2018), 4509-4536. · Zbl 1397.49019
[35] Henao, D. and Serfaty, S., ‘Energy estimates and cavity interaction for a critical-exponent cavitation model’, Comm. Pure Appl. Math.66 (2013), 1028-1101. · Zbl 1388.74082
[36] Mucci, D., ‘Fractures and vector valued maps’, Calc. Var. Partial Differential Equations22 (2005), 391-420. · Zbl 1074.49012
[37] Mucci, D., ‘Erratum to: fractures and vector valued maps’, Calc. Var. Partial Differential Equations37 (2010), 547-548. · Zbl 1185.49046
[38] Mucci, D., ‘A variational problem involving the distributional determinant’, Riv. Mat. Univ. Parma (N.S.)1 (2010), 321-345. · Zbl 1222.49056
[39] Müller, S. and Spector, S. J. ‘An existence theory for nonlinear elasticity that allows for cavitation’, Arch. Rational Mech. Anal.131 (1995), 1-66. · Zbl 0836.73025
[40] Šverák, V., ‘Regularity properties of deformations with finite energy’, Arch. Rational Mech. Anal.100 (1988), 105-127. · Zbl 0659.73038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.