×

\(\Gamma\)-convergence approximation of fracture and cavitation in nonlinear elasticity. (English) Zbl 1457.35081

Summary: Our starting point is a variational model in nonlinear elasticity that allows for cavitation and fracture that was introduced by D. Henao and C. Mora-Corral [Arch. Ration. Mech. Anal. 197, No. 2, 619–655 (2010; Zbl 1248.74006)]. The total energy to minimize is the sum of the elastic energy plus the energy produced by crack and surface formation. It is a free discontinuity problem, since the crack set and the set of new surface are unknowns of the problem. The expression of the functional involves a volume integral and two surface integrals, and this fact makes the problem numerically intractable. In this paper we propose an approximation (in the sense of \(\Gamma\)-convergence) by functionals involving only volume integrals, which makes a numerical approximation by finite elements feasible. This approximation has some similarities to the Modica-Mortola approximation of the perimeter and the Ambrosio-Tortorelli approximation of the Mumford-Shah functional, but with the added difficulties typical of nonlinear elasticity, in which the deformation is assumed to be one-to-one and orientation-preserving.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
74B20 Nonlinear elasticity
74G65 Energy minimization in equilibrium problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture

Citations:

Zbl 1248.74006

References:

[1] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York, 2000 · Zbl 0957.49001
[2] Mumford D., Shah J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577-685 (1989) · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[3] De Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108(3), 195-218 (1989) · Zbl 0682.49002
[4] Griffith A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221, 163-198 (1921) · Zbl 1454.74137 · doi:10.1098/rsta.1921.0006
[5] Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids46(8), 1319-1342 (1998) · Zbl 0966.74060
[6] Ball J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. Ser. A 306, 557-611 (1982) · Zbl 0513.73020 · doi:10.1098/rsta.1982.0095
[7] Müller, S., Spector, S.J.: An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal. 131(1), 1-66 (1995) · Zbl 0836.73025
[8] Henao, D., Mora-Corral, C.: Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Rational Mech. Anal197, 619-655 (2010) · Zbl 1248.74006
[9] Henao, D., Mora-Corral, C.: Fracture surfaces and the regularity of inverses for BV deformations. Arch. Rational Mech. Anal. 201(2), 575-629 (2011) · Zbl 1262.74007
[10] Henao D., Mora-Corral C.: Lusin’s condition and the distributional determinant for deformations with finite energy. Adv. Calc. Var. 5(4), 355-409 (2012) · Zbl 1252.49016 · doi:10.1515/acv.2011.016
[11] Modica, L., Mortola, S.: Un esempio di Γ−-convergenza. Boll. Un. Mat. Ital. B (5) 14(1), 285-299 (1977) · Zbl 0356.49008
[12] Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98(2), 123-142 (1987) · Zbl 0616.76004 · doi:10.1007/BF00251230
[13] Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999-1036 (1990) · Zbl 0722.49020
[14] Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) 6(1), 105-123 (1992) · Zbl 0776.49029
[15] Braides, A.: Approximation of free-discontinuity problems. In: Lecture Notes in Mathematics, Vol. 1694. Springer, Berlin, 1998 · Zbl 0909.49001
[16] Bourdin, B., Chambolle, A.: Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85(4), 609-646 (2000) · Zbl 0961.65062
[17] Giacomini, A.: Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. Calc. Var. Partial Differ. Equ. 22(2), 129-172 (2005) · Zbl 1068.35189
[18] Bourdin B.: Numerical implementation of the variational formulation for quasi-static brittle fracture. Interf. Free Bound. 9(3), 411-430 (2007) · Zbl 1130.74040 · doi:10.4171/IFB/171
[19] Burke, S., Ortner, C., Süli, E.: An adaptive finite element approximation of a variational model of brittle fracture. SIAM J. Numer. Anal. 48(3), 980-1012 (2010) · Zbl 1305.74080
[20] Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids48(4), 797-826 (2000) · Zbl 0995.74057
[21] Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1-3), 5-148 (2008) · Zbl 1176.74018
[22] Burke, S.: A numerical analysis of the minimisation of the Ambrosio-Tortorelli functional, with applications in brittle fracture. Ph.D. thesis, University of Oxford, 2010
[23] Chambolle, A.: An approximation result for special functions with bounded deformation. J. Math. Pures Appl. (9) 83(7), 929-954 (2004) · Zbl 1084.49038
[24] Focardi, M.: On the variational approximation of free-discontinuity problems in the vectorial case. Math. Models Methods Appl. Sci. 11(4), 663-684 (2001) · Zbl 1010.49010
[25] Williams, M., Schapery, R.: Spherical flaw instability in hydrostatic tension. Int. J. Fract. Mech. 1(1), 64-71 (1965) · Zbl 0368.73040
[26] Rice, J.R., Tracey, D.M.: On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids17, 201-217 (1969) · Zbl 0837.49011
[27] Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2-15 (1977) · Zbl 1252.49016
[28] Goods, S.H., Brown, L.M.: The nucleation of cavities by plastic deformation. Acta Metall. 27, 1-15 (1979) · Zbl 0616.76004
[29] Tvergaard, V.: Material failure by void growth and coalescence. In: Advances in Applied Mechanics, pp. 83-151. Academic Press, San Diego, 1990 · Zbl 0728.73058
[30] Gent, A.N., Wang, C.: Fracture mechanics and cavitation in rubber-like solids. J. Mater. Sci. 26(12), 3392-3395 (1991) · Zbl 0916.49002
[31] Petrinic, N., Curiel Sosa, J.L., Siviour, C.R., Elliott, B.C.F.: Improved predictive modelling of strain localisation and ductile fracture in a Ti-6Al-4V alloy subjected to impact loading. J. Phys. IV134, 147-155 (2006)
[32] Henao, D., Mora-Corral, C., Xu, X.: A numerical study of void coalescence and fracture in nonlinear elasticity (2014, in preparation) · Zbl 1425.74080
[33] Braides, A., Chambolle, A., Solci, M.: A relaxation result for energies defined on pairs set-function and applications. ESAIM Control Optim. Calc. Var. 13(4), 717-734 (2007) · Zbl 1149.49017
[34] Mora-Corral, C.: Approximation by piecewise affine homeomorphisms of Sobolev homeomorphisms that are smooth outside a point. Houston J. Math. 35(2), 515-539 (2009) · Zbl 1182.57019
[35] Bellido, J.C., Mora-Corral, C.: Approximation of Hölder continuous homeomorphisms by piecewise affine homeomorphisms. Houston J. Math. 37(2), 449-500 (2011) · Zbl 1228.57009
[36] Iwaniec T., Kovalev L.V., Onninen J.: Diffeomorphic approximation of Sobolev homeomorphisms. Arch. Rational Mech. Anal. 201(3), 1047-1067 (2011) · Zbl 1260.46023 · doi:10.1007/s00205-011-0404-4
[37] Daneri, S., Pratelli, A.: Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire31(3), 567-589 (2014) · Zbl 1348.37071
[38] Mora-Corral C., Pratelli A.: Approximation of piecewise affine homeomorphisms by diffeomorphisms. J. Geom. Anal. 24(3), 1398-1424 (2014) · Zbl 1300.41014 · doi:10.1007/s12220-012-9378-1
[39] Cortesani G.: Strong approximation of GSBV functions by piecewise smooth functions. Ann. Univ. Ferrara Sez. VII (N.S.) 43, 27-49 (1997) · Zbl 0916.49002
[40] Cortesani, G., Toader, R.: A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. 38(5), 585-604 (1999) · Zbl 0939.49024
[41] Federer, H.: Geometric measure theory. Springer, New York, 1969 · Zbl 0176.00801
[42] Ziemer, W.P.: Weakly differentiable functions. Springer, New York, 1989 · Zbl 0692.46022
[43] Conti, S., De Lellis, C.: Some remarks on the theory of elasticity for compressible Neohookean materials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2(3), 521-549 (2003) · Zbl 1114.74004
[44] Sivaloganathan, J., Spector, S.J.: On the existence of minimizers with prescribed singular points in nonlinear elasticity. J. Elasticity59(1-3), 83-113 (2000) · Zbl 0987.74016
[45] Ambrosio, L.: On the lower semicontinuity of quasiconvex integrals in SBV(Ω, Rk). Nonlinear Anal. 23(3), 405-425 (1994) · Zbl 0817.49017
[46] Ambrosio, L.: A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B (7) 3(4), 857-881 (1989) · Zbl 0767.49001
[47] Ambrosio, L.: Variational problems in SBV and image segmentation. Acta Appl. Math. 17(1), 1-40 (1989) · Zbl 0697.49004
[48] Giaquinta, M., Modica, G., Soucek, J.: Cartesian Currents in the Calculus of Variations. I. Springer, Berlin, 1998 · Zbl 0914.49001
[49] Ambrosio L.: A new proof of the SBV compactness theorem. Calc. Var. Partial Differ. Equ. 3(1), 127-137 (1995) · Zbl 0837.49011 · doi:10.1007/BF01190895
[50] Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63, 337-403 (1977) · Zbl 0368.73040 · doi:10.1007/BF00279992
[51] Müller S., Tang Q., Yan B.S.: On a new class of elastic deformations not allowing for cavitation. Ann. Inst. H. Poincaré Anal. Non Linéaire 11(2), 217-243 (1994) · Zbl 0863.49002
[52] Dacorogna, B.: Direct methods in the calculus of variations. In: Applied Mathematical Sciences, Vol. 78, 2nd edn. Springer, New York, 2008 · Zbl 1140.49001
[53] Ball J.M., Currie J.C., Olver P.J.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41(2), 135-174 (1981) · Zbl 0459.35020 · doi:10.1016/0022-1236(81)90085-9
[54] Braides, A.: A handbook of Γ-convergence. Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3, pp. 101-213 (Eds. M. Chipot and P. Quittner) North-Holland, Amsterdam, 2006 · Zbl 1195.35002
[55] Alvarado, R., Brigham, D., Maz’ya, V., Mitrea, M., Ziadé, E.: On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf-Oleinik boundary point principle. J. Math. Sci. (N. Y.)176(3), 281-360 (2011) · Zbl 1290.35046
[56] de Pascale, L.: The Morse-Sard theorem in Sobolev spaces. Indiana Univ. Math. J.50(3), 1371-1386 (2001) · Zbl 1027.58008
[57] Alberti, G.: Variational models for phase transitions, an approach via Γ-convergence. In: Calculus of Variations and Partial Differential Equations (Pisa, 1996), pp. 95-114. Springer, Berlin, 2000 · Zbl 0957.35017
[58] Henao D., Serfaty S.: Energy estimates and cavity interaction for a critical-exponent cavitation model. Comm. Pure Appl. Math. 66, 1028-1101 (2013) · Zbl 1388.74082 · doi:10.1002/cpa.21396
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.