×

A difference scheme for a triangular system of conservation laws with discontinuous flux modeling three-phase flows. (English) Zbl 1535.65127

The authors present a numerical scheme for solving a system of conservation laws that model the one-dimensional flow of two disperse phases through a continuous one. This system is of particular interest for applications such as the movement of aggregate bubbles and solid particles in flotation columns, which are crucial in various industrial processes. The paper addresses a triangular system of conservation laws with discontinuous flux, which is a significant challenge in the field due to the inherent discontinuities and the triangular structure of the system. The problem formulation includes primary and secondary disperse phases, with the primary phase’s movement independent of the secondary one’s local volume fraction.
The authors present a numerical scheme that approximates solutions to this model, focusing on its monotonicity, an invariant-region property ensuring that approximate volume fractions of the phases remain within physical bounds, and partial convergence analyses under certain assumptions. The proposed numerical scheme, notable for its simplicity and ease of implementation, is validated through theoretical arguments and numerical experiments. The paper’s theoretical contributions include proofs that the scheme satisfies the invariant-region property, ensuring that approximate volume fractions remain between zero and one, and convergence to a suitably defined entropy solution for the primary disperse phase under certain conditions. Furthermore, under additional assumptions of constant cross-sectional area and absence of flux discontinuities, the scheme for the secondary disperse phase is shown to converge to a weak solution of the corresponding conservation law.
The numerical results demonstrate the scheme’s effectiveness in modeling counter-current and co-current flows of the two disperse phases, with numerical errors tending to zero as the mesh is refined. These results underscore the practical applicability and accuracy of the proposed scheme in simulating real-world phenomena. The significance of this research lies in its advancement of numerical methods for systems of conservation laws with discontinuous flux, particularly in applications involving multiphase flows. The manuscript contributes to the theoretical understanding of such systems and provides a robust numerical tool for their simulation. This work is expected to have broad implications for the modeling and analysis of multiphase flows in various industrial and environmental processes. In summary, the paper makes a significant contribution to the field of numerical analysis of conservation laws with discontinuous flux, offering valuable insights into the modeling of three-phase flows. The proposed numerical scheme enhances the ability to simulate complex multiphase flow phenomena accurately, with implications for both theoretical research and practical applications in various engineering and scientific domains.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
35L45 Initial value problems for first-order hyperbolic systems
35L60 First-order nonlinear hyperbolic equations
35L65 Hyperbolic conservation laws
76T20 Suspensions
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Adimurthi, G. D. Veerappa Gowda, S. Mishra, Optimal entropy solutions for conservation laws with discontinuous flux, J. Hyperbolic Differ. Equ., 2 (2005), 1-56. https://doi.org/10.1142/S0219891605000361 · Zbl 1071.35025 · doi:10.1142/S0219891605000361
[2] B. Andreianov, K. H. Karlsen, N. H. Risebro, A theory of \({L}^1\)-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201, (2011), 1-60. https://doi.org/10.1007/s00205-010-0389-4 · Zbl 1261.35088 · doi:10.1007/s00205-010-0389-4
[3] B. Andreianov, C. Donadello, S. S. Ghoshal, U. Razafison, On the attainable set for a class of triangular systems of conservation laws, J. Evol. Equ., 15 (2015), 503-532. https://doi.org/10.1007/s00028-014-0267-x · Zbl 1336.35231 · doi:10.1007/s00028-014-0267-x
[4] B. Andreianov, D. Mitrović, Entropy conditions for scalar conservation laws with discontinuous flux revisited, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 32 (2015), 1307-1335. https://doi.org/10.1016/j.anihpc.2014.08.002 · Zbl 1343.35158 · doi:10.1016/j.anihpc.2014.08.002
[5] A. Bressan, G. Guerra, W. Shen, Vanishing viscosity solutions for conservation laws with regulated flux, J. Differ. Equ., 266 (2018), 312-351. https://doi.org/10.1016/j.jde.2018.07.044 · Zbl 1421.35212 · doi:10.1016/j.jde.2018.07.044
[6] R. Bürger, A. García, K. H. Karlsen, J.D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux, J. Eng. Math., 60 (2008), 387-425. https://doi.org/10.1007/s10665-007-9148-4 · Zbl 1200.76126 · doi:10.1007/s10665-007-9148-4
[7] S. Boscarino, R. Bürger, P. Mulet, G. Russo, L. M. Villada, Linearly implicit IMEX Runge-Kutta methods for a class of degenerate convection-diffusion problems, SIAM J. Sci. Comput., 37 (2015), B305-B331. https://doi.org/10.1137/140967544 · Zbl 1320.65131 · doi:10.1137/140967544
[8] R. Bürger, S. Diehl, M. C. Martí, A conservation law with multiply discontinuous flux modelling a flotation column, Netw. Heterog. Media, 13 (2018), 339-371. https://doi.org/10.3934/nhm.2018015 · Zbl 1405.35111 · doi:10.3934/nhm.2018015
[9] R. Bürger, S. Diehl, M. C. Martí, A system of conservation laws with discontinuous flux modelling flotation with sedimentation, IMA J. Appl. Math., 84 (2019), 930-973. https://doi.org/10.1093/imamat/hxz021 · Zbl 1461.76473 · doi:10.1093/imamat/hxz021
[10] R. Bürger, S. Diehl, M. C. Martí, Y. Vásquez, Flotation with sedimentation: Steady states and numerical simulation of transient operation, Minerals Eng., 157 (2020), 106419. https://doi.org/10.1016/j.mineng.2020.106419 · doi:10.1016/j.mineng.2020.106419
[11] R. Bürger, S. Diehl, M.C. Martí, Y. Vásquez, Simulation and control of dissolved air flotation and column froth flotation with simultaneous sedimentation, Water Sci. Tech., 81 (2020), 1723-1732. https://doi.org/10.2166/wst.2020.258 · doi:10.2166/wst.2020.258
[12] R. Bürger, S. Diehl, M. C. Martí, Y. Vásquez, A degenerating convection-diffusion system modelling froth flotation with drainage, arXiv: 2202.04679, [Preprint], (2022), [cited 2022 Nov 22 ]. Available from: https://doi.org/10.48550/arXiv.2202.04679 · Zbl 1516.76076
[13] R. Bürger, K. H. Karlsen, N. H. Risebro, J. D. Towers, Well-posedness in \(BV_t\) and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units, Numer. Math., 97 (2004), 25-65. https://doi.org/10.1007/s00211-003-0503-8 · Zbl 1053.76047 · doi:10.1007/s00211-003-0503-8
[14] R. Bürger, K. H. Karlsen, H. Torres, J. D. Towers, Second-order schemes for conservation laws with discontinuous flux modelling clarifier-thickener units, Numer. Math., 116 (2010), 579-617. https://doi.org/10.1007/s00211-010-0325-4 · Zbl 1204.65101 · doi:10.1007/s00211-010-0325-4
[15] R. Bürger, K. H. Karlsen, J. D. Towers, An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., 47 (2009), 1684-1712. https://doi.org/10.1007/s00211-010-0325-4 · Zbl 1201.35022 · doi:10.1007/s00211-010-0325-4
[16] R. Bürger, K. H. Karlsen, J. D. Towers, On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux, Netw. Heterog. Media, 5 (2010), 461-485. https://doi.org/10.3934/nhm.2010.5.461 · Zbl 1263.76048 · doi:10.3934/nhm.2010.5.461
[17] G. M. Coclite, K. H. Karlsen, S. Mishra, N. H. Risebro, Convergence of vanishing viscosity approximations of \(2\times 2\) triangular systems of multi-dimensional conservation laws, Boll. Unione Mat. Ital., 2 (2009), 275-284. · Zbl 1178.35246
[18] G. M. Coclite, S. Mishra, N. H. Risebro, Convergence of an Engquist-Osher scheme for a multi-dimensional triangular system of conservation laws, Math. Comp., 79 (2010), 71-94. https://doi.org/10.1090/S0025-5718-09-02251-0 · Zbl 1369.65108 · doi:10.1090/S0025-5718-09-02251-0
[19] M. G. Crandall, L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc., 78 (1980), 385-390. https://doi.org/10.1090/S0002-9939-1980-0553381-X · Zbl 0449.47059 · doi:10.1090/S0002-9939-1980-0553381-X
[20] V. G. Danilov, D. Mitrovic, Delta shock wave formation in the case of triangular hyperbolic system of conservation laws. J. Differ. Equ., 245 (2008), 3704-3734. https://doi.org/10.1090/S0025-5718-09-02251-0 · Zbl 1192.35120 · doi:10.1090/S0025-5718-09-02251-0
[21] J. E. Dickinson, K. P. Galvin, Fluidized bed desliming in fine particle flotation, Part Ⅰ, Chem. Eng. Sci., 108 (2014), 283-298. https://doi.org/10.1016/j.ces.2013.11.006 · doi:10.1016/j.ces.2013.11.006
[22] S. Diehl, On scalar conservation laws with point source and discontinuous flux function, SIAM J. Math. Anal., 26 (1995), 1425-1451. https://doi.org/10.1137/S0036141093242533 · Zbl 0852.35094 · doi:10.1137/S0036141093242533
[23] S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation, SIAM J. Appl. Math., 56 (1996), 388-419. https://doi.org/10.1137/S0036139994242425 · Zbl 0849.35142 · doi:10.1137/S0036139994242425
[24] S. Diehl, Operating charts for continuous sedimentation Ⅰ: control of steady states, J. Eng. Math., 41 (2001), 117-144. https://doi.org/10.1023/A:1011959425670 · Zbl 1128.76370 · doi:10.1023/A:1011959425670
[25] S. Diehl, The solids-flux theory—confirmation and extension by using partial differential equations, Water Res.42 (2008), 4976-4988. https://doi.org/10.1016/j.watres.2008.09.005 · doi:10.1016/j.watres.2008.09.005
[26] B. Engquist, S. Osher, One-sided difference approximations for nonlinear conservation laws, Math. Comp., 36 (1981), 321-351. https://doi.org/10.1090/S0025-5718-1981-0606500-X · Zbl 0469.65067 · doi:10.1090/S0025-5718-1981-0606500-X
[27] J. A. Finch, G. S. Dobby, Column Flotation, London: Pergamon Press, 1990.
[28] K. P. Galvin, J. E. Dickinson, Fluidized bed desliming in fine particle flotation Part Ⅱ: Flotation of a model feed, Chem. Eng. Sci., 108 (2014), 299-309. https://doi.org/10.1016/j.ces.2013.11.027 · doi:10.1016/j.ces.2013.11.027
[29] T. Gimse, N. H. Risebro, Riemann problems with a discontinuous flux function. Third International Conference on Hyperbolic Problems, Theory, Numerical Methods and Applications, 1 (1991), 488-502. · Zbl 0789.35102
[30] H. Holden, N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, \(2^{ nd }\) edition, Berlin: Springer Verlag, 2015. · Zbl 1346.35004
[31] E. L. Isaacson, J. B. Temple, Analysis of a singular hyperbolic system of conservation laws, J. Differ. Equ., 65 (1986), 250-268. · Zbl 0612.35085
[32] K. H. Karlsen, S. Mishra, N. H. Risebro, Semi-Godunov schemes for general triangular systems of conservation laws, J. Eng. Math., 60 (2008), 337-349. https://doi.org/10.1007/s10665-007-9163-5 · Zbl 1133.76033 · doi:10.1007/s10665-007-9163-5
[33] K. H. Karlsen, S. Mishra, N. H. Risebro, Convergence of finite volume schemes for triangular systems of conservation laws, Numer. Math., 111 (2009), 559-589. https://doi.org/10.1007/s00211-008-0199-x · Zbl 1190.65133 · doi:10.1007/s00211-008-0199-x
[34] K. H. Karlsen, N. H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, ESAIM: Math. Model. Numer. Anal., 35 (2001), 239-269. https://doi.org/10.1051/m2an:2001114 · Zbl 1032.76048 · doi:10.1051/m2an:2001114
[35] K. H. Karlsen, N. H. Risebro, J. D. Towers, \(L^1\) stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients, Skr. K. Nor. Vidensk. Selsk., 3 (2003), 1-49. · Zbl 1036.35104
[36] K. H. Karlsen, J. D. Towers, Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition, J. Hyperbolic Differ. Equ., 14 (2017), 671-701. https://doi.org/10.1142/S0219891617500229 · Zbl 1380.65158 · doi:10.1142/S0219891617500229
[37] S. N. Kružkov, First order quasi-linear equations in several independent variables, Math. USSR Sb., 10 (1970), 217-243. · Zbl 0215.16203
[38] G. J. Kynch, A theory of sedimentation, Trans. Faraday Soc., 48 (1952), 166-176. https://doi.org/10.1039/tf9524800166 · doi:10.1039/tf9524800166
[39] D. Mitrovic, New entropy conditions for scalar conservation laws with discontinuous flux, Discrete Contin. Dyn. Syst., 30 (2011), 1191-1210. https://doi.org/10.3934/dcds.2011.30.1191 · Zbl 1228.35144 · doi:10.3934/dcds.2011.30.1191
[40] D. Mitrovic, V. Bojkovic, V. G. Danilov, Linearization of the Riemann problem for a triangular system of conservation laws and delta shock wave formation process, Math. Meth. Appl. Sci., 33 (2010), 904-921. https://doi.org/10.1002/mma.1226 · Zbl 1189.35178 · doi:10.1002/mma.1226
[41] R. Pal, J. H. Masliyah, Flow characterization of a flotation column, Canad. J. Chem. Eng., 67 (1989), 916-923. https://doi.org/10.1002/cjce.5450670608 · doi:10.1002/cjce.5450670608
[42] R. Pal, J. H. Masliyah, Oil recovery from oil in water emulsions using a flotation column, Canad. J. Chem. Eng., 68 (1990), 959-967. https://doi.org/10.1002/cjce.5450680611 · doi:10.1002/cjce.5450680611
[43] E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Rational Mech. Anal., 195 (2010), 643-673. https://doi.org/10.1007/s00205-009-0217-x · Zbl 1191.35102 · doi:10.1007/s00205-009-0217-x
[44] E. Yu. Panov, Erratum to: Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Rational Mech. Anal., 196 (2010), 1077-1078. https://doi.org/10.1007/s00205-009-0217-x · doi:10.1007/s00205-009-0217-x
[45] P. Quintanilla, S. J. Neethling, P. R. Brito-Parada, Modelling for froth flotation control: A review, Min. Eng., 162 (2021), 106718. https://doi.org/10.1016/j.mineng.2020.106718 · doi:10.1016/j.mineng.2020.106718
[46] J. F. Richardson, W. N. Zaki, Sedimentation and fluidisation: Part Ⅰ, Trans. Instn. Chem. Engrs. (London), 32 (1954), 35-53.
[47] M. D. Rosini, Systems of conservation laws with discontinuous fluxes and applications to traffic, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 73 (2019), 135-173. · Zbl 1430.35236
[48] C. O. R. Sarrico, A distributional product approach to \(\delta \)-shock wave solutions for a generalized pressureless gas dynamic system, Int. J. Math., 25, (2014), 145007. · Zbl 1298.46038
[49] W. Shen, On the Cauchy problems for polymer flooding with gravitation, J. Differ. Equ., 261 (2016), 627-653. https://doi.org/10.1016/j.jde.2016.03.020 · Zbl 1382.35162 · doi:10.1016/j.jde.2016.03.020
[50] P. Stevenson, P. S. Fennell, K. P. Galvin, On the drift-flux analysis of flotation and foam fractionation processes, Canad. J. Chem. Eng., 86 (2008), 635-642. https://doi.org/10.1002/cjce.20076 · doi:10.1002/cjce.20076
[51] J. Vandenberghe, J. Chung, Z. Xu, J. Masliyah, Drift flux modelling for a two-phase system in a flotation column, Canad. J. Chem. Eng., 83 (2005), 169-176.
[52] Y. Vásquez, Conservation Laws with Discontinuous Flux Modeling Flotation Columns, (Spanish), Doctoral Thesis of Universidad de Concepción, Concepción, 2022.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.