×

On the attainable set for a class of triangular systems of conservation laws. (English) Zbl 1336.35231

The authors describe the attainable set for solutions of special triangular systems of conservation laws consisting of linear continuity equations \((v_i)_t+(g_i(u)v_i)_x=0\), \(i=1,\dots,m\), coupled with a genuinely nonlinear conservation law \(u_t+f(u)_x=0\). After minor modifications such systems includes in particular the classical Keyfitz-Kranzer systems. The authors construct the backward solutions and prove that they are admissible forward solution whenever the target data are attainable. In particular, this implies that the constructed solutions are isentropic. Results of numerical experiments are also presented.

MSC:

35L65 Hyperbolic conservation laws
35R30 Inverse problems for PDEs
47J35 Nonlinear evolution equations

References:

[1] Adimurthi, S. S. Ghoshal, and G. D. Veerappa Gowda. Exact controllability of scalar conservation law with strict convex flux. Math. Control Relat. Fields 4(4) (2014), 401-449. · Zbl 1310.35232
[2] Adimurthi, S.S. Ghoshal, and G. D. Veerappa Gowda. Optimal controllability for scalar conservation laws with strict convex flux. J. Hyperbolic Differ. Equ, 11(3) (2014) 477-491. · Zbl 1311.35151
[3] L. Ambrosio. Transport equation and Cauchy problem for BV vector fields. Invent. Math., 158(2) (2004) 227-260. · Zbl 1075.35087
[4] L. Ambrosio, F. Bouchut, and C. De Lellis. Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions. Comm. Partial Differential Equations, 29(9-10) (2004) 1635-1651. · Zbl 1072.35116
[5] Ambrosio L., Crippa G., Figalli A., Spinolo L. V.: Some new well-posedness results for continuity and transport equations, and applications to the chromatography system. SIAM J. Math. Anal., 41(5), 1890-1920 (2009) · Zbl 1222.35060 · doi:10.1137/090754686
[6] L. Ambrosio and C. De Lellis. Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions. Int. Math. Res. Not., 41 (2003), 2205-2220. · Zbl 1061.35048
[7] Ancona F., Coclite G. M.: On the attainable set for Temple class systems with boundary controls. SIAM J. Control Optim. 43(6), 2166-2190 (2005) · Zbl 1087.93010 · doi:10.1137/S0363012902407776
[8] Ancona F., Marson A.: On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Control Optim., 36(1), 290-312 (1998) · Zbl 0919.35082 · doi:10.1137/S0363012996304407
[9] B. Andreianov, C. Donadello, S. S. Ghoshal and U. Razafison. HAL preprint hal.archives-ouvertes.fr/hal-00967600 · Zbl 1151.93316
[10] Bressan A., Coclite G. M.: On the boundary control of systems of conservation laws. SIAM J. Control Optim., 41(2), 607-622 (2002) · Zbl 1026.35075 · doi:10.1137/S0363012901392529
[11] F. Bouchut and F. James. Équations de transport unidimensionnelles à coefficients discontinus. C. R. Acad. Sci. Paris Sér. I Math., 320(9) (1995), 1097-1102. · Zbl 0829.35139
[12] Bouchut F., James F.: One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal., 32(7), 891-933 (1998) · Zbl 0989.35130 · doi:10.1016/S0362-546X(97)00536-1
[13] A. Bressan. Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem. · Zbl 0977.35087
[14] Coron J.-M.: Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems, 5(3), 295-312 (1992) · Zbl 0760.93067 · doi:10.1007/BF01211563
[15] J.-M. Coron, G. Bastin, B. d’Andréa-Novel. Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47(3) (2008) 1460-1498. · Zbl 1172.35008
[16] J.-M. Coron, O. Glass, Z. Q. Wang. Exact boundary controllability for 1-D quasilinear hyperbolic systems with a vanishing characteristic speed. SIAM J. Control and Optimization, 48(5) (2009) 3105-3122. · Zbl 1201.35126
[17] Crippa G., Spinolo L. V.: An overview on some results concerning the transport equation and its applications to conservation laws. Commun. Pure Appl. Anal., 9(5), 1283-1293 (2010) · Zbl 1205.35043 · doi:10.3934/cpaa.2010.9.1283
[18] Dafermos C.M.: Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Indiana Univ. Math. J., 26(6), 1097-1119 (1977) · Zbl 0377.35051 · doi:10.1512/iumj.1977.26.26088
[19] C. M. Dafermos. Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 3rd ed., 2010. · Zbl 1196.35001
[20] C. De Lellis. Notes on hyperbolic systems of conservation laws and transport equations. In Handbook of differential equations: evolutionary equations. Vol. III, Handb. Differ. Equ., pages 277-382. Elsevier/North-Holland, Amsterdam, 2007. · Zbl 1195.35215
[21] R. J. DiPerna and P.-L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98(3) (1989) 511-547. · Zbl 0696.34049
[22] Fatemi E., Engquist B., Osher S.: Numerical solution of the high frequency asymptotic expansion for the scalar wave equation. J. Comput. Phys., 120(1), 145-155 (1995) · Zbl 0836.65099 · doi:10.1006/jcph.1995.1154
[23] Freistühler H.: On the Cauchy problem for a class of hyperbolic systems of conservation laws. J. Differential Equations, 112(1), 170-178 (1994) · Zbl 0806.35113 · doi:10.1006/jdeq.1994.1099
[24] Frid H.: Asymptotic stability of non-planar Riemann solutions for multi-D systems of conservation laws with symmetric nonlinearities. J. Hyperbolic Differ. Equ., 1(3), 567-579 (2004) · Zbl 1066.35056 · doi:10.1142/S0219891604000238
[25] S. S. Ghoshal. Finer analysis of characteristic curve and its application to exact, optimal controllability, structure of the entropy solution of a scalar conservation law with convex flux. PhD Thesis. TIFR CAM, Bangalore, 2012.
[26] O. Glass. A remark on the controllability of a system of conservation laws in the context of entropy solutions. Series in Contemporary Applied Mathematics Vol. 15 (2010), 332-343. · Zbl 1244.35088
[27] Glass O., Guerrero S.: On the uniform controllability of the Burgers equation. SIAM J. Control Optim., 46(4), 1211-1238 (2007) · Zbl 1140.93013 · doi:10.1137/060664677
[28] E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws, volume 118 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996. · Zbl 0860.65075
[29] Gosse L., James F.: Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients. Math. Comp., 69(231), 987-1015 (2000) · Zbl 0949.65094 · doi:10.1090/S0025-5718-00-01185-6
[30] S. Guerrero and O. Yu. Imanuvilov. Remarks on global controllability for the Burgers equation with two control forces. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6) (2007) 897-906. · Zbl 1248.93024
[31] Horsin T.: On the controllability of the Burgers equation. ESAIM Control Optim. Calc. Var., 3, 83-95 (1998) · Zbl 0897.93034 · doi:10.1051/cocv:1998103
[32] B. L. Keyfitz and H. C. Kranzer. A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch. Rational Mech. Anal., 72(3) (1979/80) 219-241. · Zbl 0434.73019
[33] M. V. Korobkov and E. Yu. Panov. On isentropic solutions of first-order quasilinear equations. Mat. Sb., 197(5) (2006) 99-124. · Zbl 1157.35024
[34] S. N. Kruzhkov. First order quasilinear equations with several independent variables. (Russian) Mat. Sb. (N.S.) 81 (197) 228-255. · Zbl 0202.11203
[35] Lax P.D.: Hyperbolic systems of conservation laws. II. Comm. Pure Appl. Math., 10, 537-566 (1957) · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[36] Léautaud M.: Uniform controllability of scalar conservation laws in the vanishing viscosity limit. SIAM J. Control and Optimization, 50(3), 1661-1699 (2012) · Zbl 1251.93033 · doi:10.1137/100803043
[37] R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002. · Zbl 1010.65040
[38] Li T.-T.: Exact controllability for quasilinear hyperbolic systems and its application to unsteady flows in a network of open canals. Math. Meth. Appl. Sci. 27(9), 1089-1114 (2004) · Zbl 1151.93316 · doi:10.1002/mma.488
[39] Li T.-T., Rao B.-P.: Exact boundary controllability for quasi-linear hyperbolic systems. SIAM J. Control Optim. 41(6), 1748-1755 (2003) · Zbl 1032.35124 · doi:10.1137/S0363012901390099
[40] O. A. Oleinik. Discontinuous solutions of non-linear differential equations. (Russian) Uspehi Mat. Nauk (N.S.) 12 (1957), 3-73, English transl. in Amer. Math. Soc. Transl. 26 (1963) 95-172. · Zbl 0131.31803
[41] E. Yu. Panov. On the theory of entropy solutions of the Cauchy problem for a class of nonstrictly hyperbolic systems of conservation laws. Mat. Sb., 191(1) (2000) 127-157. · Zbl 0954.35107
[42] E. Yu. Panov. Generalized solutions of the Cauchy problem for a transport equation with discontinuous coefficients. In Instability in models connected with fluid flows. II, volume 7 of Int. Math. Ser. (N. Y.), pages 23-84. Springer, New York, 2008. · Zbl 1296.35090
[43] D. Serre. Systems of conservation laws. I. Hyperbolicity, entropies, shock waves. Cambridge University Press, Cambridge, 1999. · Zbl 0930.35001
[44] J. Smoller. Shock waves and reaction-diffusion equations, volume 258 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, second edition, 1994. · Zbl 0807.35002
[45] Yu Lixin. Global exact boundary observability for first-order quasilinear hyperbolic systems of diagonal form. Math. Methods Appl. Sci. 35(13) (2012), 1505-1517. · Zbl 1250.35138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.