×

Non-diagonal critical central sections of the cube. (English) Zbl 1535.51025

Summary: We study the \((n - 1)\)-dimensional volume of central hyperplane sections of the \(n\)-dimensional cube \(Q_n\). Our main goal is two-fold: first, we provide an alternative, simpler argument for proving that the volume of the section perpendicular to the main diagonal of the cube is strictly locally maximal for every \(n \geq 4\), which was shown before by L. Pournin [“Local extrema for hypercube sections”, Preprint, arXiv:2203.15054]. Then, we prove that non-diagonal critical central sections of \(Q_n\) exist in all dimensions at least 4. The crux of both proofs is an estimate on the rate of decay of the Laplace-Pólya integral \(J_n(r) = \frac{1}{\pi} \int_{-\infty}^\infty \operatorname{sinc}^n t \cdot \cos(r t) \mathrm{d} t\) that is achieved by combinatorial means. This also yields improved bounds for Eulerian numbers of the first kind.

MSC:

51M25 Length, area and volume in real or complex geometry
52A38 Length, area, volume and convex sets (aspects of convex geometry)
05A20 Combinatorial inequalities

References:

[1] Aliev, I., On the volume of hyperplane sections of a d-cube, Acta Math. Hung., 163, 2, 547-551, 2021 · Zbl 1488.52013
[2] Ambrus, G., Critical central sections of the cube, Proc. Am. Math. Soc., 150, 10, 4463-4474, 2022 · Zbl 1497.52012
[3] Ball, K., Cube slicing in \(\mathbb{R}^n\), Proc. Am. Math. Soc., 97, 3, 465-473, 1986 · Zbl 0601.52005
[4] Ball, K., Convex geometry and functional analysis, (Johnson, W. B.; Lindenstrauss, J., Handbook of the Geometry of Banach Spaces, vol. I, 2001, North-Holland Publishing Co.), 161-194 · Zbl 1017.46004
[5] Bartha, F.Á.; Fodor, F.; González Merino, B., Central diagonal sections of the n-cube, Int. Math. Res. Not., 2021, 4, 2861-2881, 2021 · Zbl 1516.52006
[6] Bennett, W. R.; Curtis, H. E.; Rice, S. O., Interchannel interference in FM and PM systems under noise loading conditions, Bell Syst. Tech. J., 34, 3, 601-636, 1955
[7] Bertsekas, D. P., Nonlinear Programming, 1999, Athena Scientific · Zbl 1015.90077
[8] Burgess, R. E., Comments on Dr. Silberstein’s Paper in Phil. Mag., June 1944, Philos. Mag., 36, 253, 143, 1945
[9] Carlitz, L.; Kurtz, D. C.; Scoville, R.; Stackelberg, O. P., Asymptotic properties of Eulerian numbers, Probab. Theory Relat. Fields, 23, 1, 47-54, 1972 · Zbl 0226.60049
[10] Comtet, L., Advanced Combinatorics, 1974, D. Reidel Publishing Company · Zbl 0283.05001
[11] Goddard, L. S., The accumulation of chance effects and the Gaussian frequency distribution, Philos. Mag., 36, 257, 428-433, 1945
[12] Grimsey, A. H.R., On the accumulation of chance effects and the Gaussian frequency distribution: to the editors of the Philosophical Magazine, Philos. Mag., 36, 255, 294-295, 1945
[13] Hadwiger, H., Gitterperiodische Punktmengen und Isoperimetrie, Monatshefte Math., 76, 5, 410-418, 1972 · Zbl 0248.52012
[14] Harumi, K.; Katsura, S.; Wrench, J. W., Values of \((2 / \pi) \int_0^\infty ( ( \sin t ) / t )^n \operatorname{d} t\), Math. Comput., 14, 72, 379, 1960 · Zbl 0091.29710
[15] Hensley, D., Slicing the cube in \(\mathbb{R}^n\) and probability (bounds for the measure of a central cube slice in \(\mathbb{R}^n\) by probability methods), Proc. Am. Math. Soc., 73, 1, 95-100, 1979 · Zbl 0394.52006
[16] Ivanov, G.; Tsiutsiurupa, I., On the volume of sections of the cube, Anal. Geom. Metric Spaces, 9, 1, 1-18, 2021 · Zbl 1466.52008
[17] Kerman, R.; Ol’hava, R.; Spektor, S., An asymptotically sharp form of Ball’s integral inequality, Proc. Am. Math. Soc., 143, 9, 3839-3846, 2015 · Zbl 1408.33003
[18] Koldobsky, A., Fourier Analysis in Convex Geometry, Mathematical Surveys and Monographs, vol. 116, 2005, Amer. Math. Soc. · Zbl 1082.52002
[19] Lang, S., Undergraduate Analysis, 1997, Springer-Verlag: Springer-Verlag New York
[20] Laplace, P. S., Théorie analytique des probabilités, vol. 7, 1812, Courcier
[21] Lesieur, L.; Nicolas, J.-L., On the Euleran Numbers \(M_n = \max_{1 \leq k \leq n} A(n, k)\), Eur. J. Comb., 13, 5, 379-399, 1992 · Zbl 0766.11012
[22] Medhurst, R. G.; Roberts, J. H., Evaluation of \(I_n(b) = \frac{ 2}{ \pi} \int_0^\infty ( \frac{ s i n x}{ x} )^n \cos(b x) d x\), Math. Comput., 19, 89, 113-117, 1965 · Zbl 0147.14601
[23] Moskowitz, M. A.; Paliogiannis, F. C., Functions of Several Real Variables, 2011, World Scientific · Zbl 1233.26001
[24] Nayar, P.; Tkocz, T., Extremal sections and projections of certain convex bodies: a survey, 2022, arXiv preprint
[25] Parker, J. B., The accumulation of chance effects and the Gaussian frequency distribution: to the editors of the Philosophical Magazine, Philos. Mag., 38, 284, 681-682, 1947
[26] Pournin, L., Local extrema for hypercube sections, J. Anal. Math., 2023
[27] Pournin, L., Shallow sections of the hypercube, Isr. J. Math., 255, 2, 685-704, 2023 · Zbl 1519.52007
[28] Pólya, G., Berechnung eines bestimmten Integrals, Math. Ann., 74, 2, 204-212, 1913 · JFM 44.0357.02
[29] Schlage-Puchta, J.-C., Asymptotic evaluation of \(\int_0^\infty ( \frac{ \sin x}{ x} )^n \operatorname{d} x\), Commun. Korean Math. Soc., 35, 4, 1193-1202, 2020 · Zbl 1461.26017
[30] Silberstein, L., The accumulation of chance effects and the Gaussian frequency distribution, Philos. Mag., 35, 245, 395-404, 1944 · Zbl 0060.28803
[31] Thompson, R., Evaluation of \(I_n(b) = 2 \pi^{- 1} \int_0^\infty ( \frac{ s i n x}{ x} )^n \cos(b x) d x\) and of similar integrals, Math. Comput., 20, 94, 330-332, 1966 · Zbl 0146.14303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.