×

On the volume of hyperplane sections of a \(d\)-cube. (English) Zbl 1488.52013

Summary: We obtain an optimal upper bound for the normalised volume of a hyperplane section of an origin-symmetric \(d\)-dimensional cube. This confirms a conjecture posed by Imre Bárány and Péter Frankl.

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry
52A38 Length, area, volume and convex sets (aspects of convex geometry)

References:

[1] Aliev, I., Siegel’s lemma and sum-distinct sets, Discrete Comput. Geom., 39, 59-66 (2008) · Zbl 1184.11022 · doi:10.1007/s00454-008-9059-9
[2] Ball, K., Cube slicing in \(\mathbb{R}^n\), Proc. Amer. Math. Soc., 97, 465-472 (1986) · Zbl 0601.52005
[3] I. Bárány and P. Frankl, Cells in the box and a hyperplane, manuscript (2020)
[4] Borwein, D.; Borwein, J., Some remarkable properties of sinc and related integrals, Ramanujan J., 5, 73-89 (2001) · Zbl 0991.42004 · doi:10.1023/A:1011497229317
[5] Chakerian, D.; Logothetti, D., Cube slices, pictorial triangles, and probability, Math. Mag., 64, 219-241 (1991) · Zbl 0754.52002 · doi:10.1080/0025570X.1991.11977612
[6] R. J. Gardner, Geometric Tomography, Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press (Cambridge, 1995) · Zbl 0864.52001
[7] A. Koldobsky, Fourier Analysis in Convex Geometry, Mathematical Surveys and Monographs, vol. 116, American Mathematical Society (Providence, 2005) · Zbl 1082.52002
[8] Lutwak, E., Intersection bodies and dual mixed volumes, Adv. Math., 71, 232-261 (1988) · Zbl 0657.52002 · doi:10.1016/0001-8708(88)90077-1
[9] P. S. Laplace, Théorie Analytique des Probabilités (Paris, 1812) · JFM 18.0166.01
[10] Medhurst, RG; Roberts, JH, Evaluation of the integral \(I_n(b)=\frac{2}{\pi }\int_0^\infty (\frac{\sin x}{x})^n \cos (bx)\, dx\), Math. Comp., 19, 113-117 (1965) · Zbl 0147.14601
[11] Pólya, G., Berechnung eines Bestimmten Integrals, Math. Ann., 74, 204-212 (1913) · JFM 44.0357.02 · doi:10.1007/BF01456040
[12] N. J. A. Sloane, Sequences A049330 and A049331, The On-Line Encyclopedia of Integer Sequences, oeis.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.