×

Coronas for properly combable spaces. (English) Zbl 1535.51012

This paper presents a systematic method for constructing coronas, specifically Higson-dominated boundaries at infinity, of combable spaces. The authors introduce three additional properties for combings: properness, coherence, and expandingness. Properness is a crucial condition for the successful construction of the corona. Assuming coherence and expandingness, attaching our corona to a Rips complex construction results in a contractible \(\sigma\)-compact space, where the corona acts as a \(Z\)-set. This leads to the bijectivity of transgression maps, injectivity of the coarse assembly map, and surjectivity of the coarse co-assembly map. In the case of groups, the authors provide an estimate of the cohomological dimension of the corona based on the asymptotic dimension. Moreover, if the group has a finite model for its classifying space \(\mathrm{BG}\), the constructions yield a \(Z\)-structure for the group.

MSC:

51F30 Lipschitz and coarse geometry of metric spaces
57M07 Topological methods in group theory
20F65 Geometric group theory
20F67 Hyperbolic groups and nonpositively curved groups

Software:

MathOverflow

References:

[1] Alonso, J. M., Combings of groups, in Algorithms and Classification in Combinatorial Group Theory, eds. Baumslag, G. and Miller III, C. F., , Vol. 23 (Springer-Verlag, 1992).
[2] Anantharaman-Delaroche, C., Amenability and exactness for dynamical systems and their \(C^\ast \)-algebras, Trans. Amer. Math. Soc.354(10) (2002) 4153-4178. · Zbl 1035.46039
[3] Baker, O. and Riley, T. R., Cannon-Thurston maps do not always exist, Forum Math. Sigma1 (2013) 11 pp., Id/No e3. · Zbl 1276.20054
[4] Behrstock, J., Hagen, M. and Sisto, A., Hierarchically hyperbolic spaces I: Curve complexes for cubical groups, Geom. Topol.21(3) (2017) 1731-1804. · Zbl 1439.20043
[5] Behrstock, J., Hagen, M. and Sisto, A., Hierarchically hyperbolic spaces II: Combination theorems and the distance formula, Pacific J. Math.299(2) (2019) 257-338. · Zbl 1515.20208
[6] Bestvina, M., Local homology properties of boundaries of groups, Michigan Math. J.43(1) (1996) 123-139. · Zbl 0872.57005
[7] M. Bestvina, Questions in geometric group theory (2004), http://www.math. utah.edu/˜bestvina/.
[8] Bestvina, M. and Mess, G., The boundary of negatively curved groups, J. Amer. Math. Soc.4(3) (1991) 469-481. · Zbl 0767.20014
[9] Borsuk, K., Sur les rétractes, Fund. Math.17 (1931) 152-170. · Zbl 0003.02701
[10] Bosa, J., Brown, N. P., Sato, Y., Tikuisis, A., White, S. and Winter, W., Covering dimension of \(\text{C}^\ast \)-algebras and 2-coloured classification, Mem. Amer. Math. Soc.257(1233) (2019) vii+97. · Zbl 1448.46005
[11] Brady, T. and McCammond, J. P., Three-generator Artin groups of large type are biautomatic, J. Pure Appl. Alg.151 (2000) 1-9. · Zbl 1004.20023
[12] Bridson, M. R. and Haefliger, A., Metric Spaces of Non-Positive Curvature, , Vol. 319 (Springer, 1999). · Zbl 0988.53001
[13] Brink, B. and Howlett, R. B., A finiteness property and an automatic structure for Coxeter groups, Math. Ann.296 (1993) 179-190. · Zbl 0793.20036
[14] Brown, K. S., Cohomology of Groups, , Vol. 87 (Springer, 1982). · Zbl 0584.20036
[15] Buckley, S. M. and Falk, K., The boundary at infinity of a rough \(\text{C}AT(0)\) space, Anal. Geom. Metr. Spaces2(1) (2014) 53-80. · Zbl 1296.51023
[16] Bunke, U. and Engel, A., Homotopy Theory with Bornological Coarse Spaces, , Vol. 2269 (Springer, Cham, 2020). · Zbl 1457.19001
[17] Carlsson, G. and Pedersen, E. K., Controlled algebra and the Novikov conjectures for \(K\)- and \(L\)-theory, Topology34(3) (1995) 731-758. · Zbl 0838.55004
[18] Carlsson, G. and Pedersen, E. K., Čech homology and the Novikov conjectures for \(K\)- and \(L\)-theory, Math. Scand.82(1) (1998) 5-47. · Zbl 0936.19003
[19] G. Carlsson, E. K. Pedersen and W. Vogell, Continuously controlled algebraic \(K\)-theory of spaces and the Novikov conjecture, Report No. 17 1993/1994, Institut Mittag-Leffler (1993). · Zbl 0897.55003
[20] J. Chalopin, V. Chepoi, A. Genevois, H. Hirai and D. Osajda, Helly groups, preprint (2021), arXiv:2002.06895.
[21] Charney, R., Artin groups of finite type are biautomatic, Math. Ann.292 (1992) 671-683. · Zbl 0736.57001
[22] Descombes, D. and Lang, U., Convex geodesic bicombings and hyperbolicity, Geom. Dedicata177 (2015) 367-384. · Zbl 1343.53036
[23] Dranishnikov, A., Cohomological approach to asymptotic dimension, Geom. Dedicata141 (2009) 59-86. · Zbl 1175.20035
[24] Dranishnikov, A. N., On Bestvina-Mess formula, in Topological and Asymptotic Aspects of Groups Theory, , Vol. 394 (American Mathematical Society, 2006), pp. 77-85. · Zbl 1106.20034
[25] Dranishnikov, A. N., Keesling, J. and Uspenskij, V. V.. On the Higson corona of uniformly contractible spaces, Topology37(4) (1998) 791-803. · Zbl 0910.54026
[26] Durham, M. G., Hagen, M. and Sisto, A., Boundaries and automorphisms of hierarchically hyperbolic spaces, Geom. Topol.21(6) (2017) 3659-3758. · Zbl 1439.20044
[27] M. G. Durham, Y. N. Minsky and A. Sisto, Stable cubulations, bicombings, and barycenters, preprint (2020), arXiv:2009.13647. · Zbl 1535.20208
[28] Eberlein, P. and O’Neill, B., Visibility manifolds, Pacific J. Math.46(1) (1973) 45-109. · Zbl 0264.53026
[29] Emerson, H. and Meyer, R., Dualizing the coarse assembly map, J. Inst. Math. Jussieu5(2) (2006) 161-186. · Zbl 1092.19005
[30] Emerson, H. and Meyer, R., A descent principle for the Dirac-dual-Dirac method, Topology46 (2007) 185-209. · Zbl 1119.19005
[31] Emerson, H. and Meyer, R., Coarse and equivariant co-assembly maps, in \(K\)-Theory and Noncommutative Geometry, eds. Cortiñas, G., Cuntz, J., Karoubi, M., Nest, R. and Weibel, C. (EMS, 2008).
[32] Engel, A., Banach strong Novikov conjecture for polynomially contractible groups, Adv. Math.330 (2018) 148-172. · Zbl 1436.20077
[33] Epstein, D., Cannon, J., Holt, D., Levy, S., Paterson, M. and Thurston, W., Word Processing in Groups (Jones and Bartlett Publishers, 1992). · Zbl 0764.20017
[34] Farrell, F. T. and Lafont, J.-F., EZ-structures and topological applications, Comment. Math. Helvetici80 (2005) 103-121. · Zbl 1094.57003
[35] Fukaya, T. and Oguni, S.-I., The coarse Baum-Connes conjecture for Busemann nonpositively curved spaces, Kyoto J. Math.56(1) (2016) 1-12. · Zbl 1348.58013
[36] Fukaya, T. and Oguni, S.-I., A coarse Cartan-Hadamard theorem with application to the coarse Baum-Connes conjecture, J. Topol. Anal.12(3) (2020) 857-895. · Zbl 1454.58019
[37] Geoghegan, R. and Ontaneda, P., Boundaries of cocompact proper \(\text{CAT}(0)\) spaces, Topology46(2) (2007) 129-137. · Zbl 1124.20026
[38] Gersten, S. M., Bounded cocycles and combings of groups, Int. J. Algebra Comput.02(3) (1992) 307-326. · Zbl 0762.57001
[39] Gersten, S. M., Dehn functions and \(\ell_1\)-norms of finite presentations, in Algorithms and Classification in Combinatorial Group Theory, eds. Baumslag, G. and Miller III, C. F. (Springer-Verlag, 1992).
[40] Gersten, S. M., Finiteness properties of asynchronously automatic groups, in Geometric Group Theory, eds. Charney, R., Davis, M. W. and Shapiro, M. (Walter de Gruyter, 1995). · Zbl 0849.20025
[41] Gray, B. I., Spaces of the same \(n\)-type, for all \(n\), Topology5 (1966) 241-243. · Zbl 0149.20102
[42] Gromov, M., Hyperbolic groups, in Essays in Groups Theory, , Vol. 8 (Springer, 1987), pp. 75-263. · Zbl 0634.20015
[43] Gromov, M., Geometric Group Theory Volume 2: Asymptotic Invariants of Infinite Groups (Cambridge University Press, 1993). · Zbl 0841.20039
[44] Guilbault, C. R., Weak \(\mathcal{Z} \)-structures for some classes of groups, Alg. Geom. Topol.14 (2014) 1123-1152. · Zbl 1316.57002
[45] Guilbault, C. R. and Moran, M. A., A comparison of large scale dimension of a metric space to the dimension of its boundary, Topol. Appl.199 (2015) 17-22. · Zbl 1339.55001
[46] Guilbault, C. R. and Tirel, C. J., On the dimension of \(\mathcal{Z} \)-sets, Topol. Appl.160 (2013) 1849-1852. · Zbl 1282.55007
[47] Guilbault, C. R., Ends, shapes, and boundaries in manifold topology and geometric group theory, in Topology and Geometric Group Theory, , Vol. 184 (Springer, [Cham], 2016), pp. 45-125. · Zbl 1434.57019
[48] Guilbault, C. R. and Moran, M. A., Proper homotopy types and \(\mathcal{Z} \)-boundaries of spaces admitting geometric group actions, Expo. Math.37(3) (2019) 292-313. · Zbl 1486.20057
[49] Guilbault, C. R., Moran, M. A. and Tirel, C. J., Boundaries of Baumslag-Solitar groups, Algebr. Geom. Topol.19(4) (2019) 2077-2097. · Zbl 1481.20158
[50] Th. Haettel, N. Hoda and H. Petyt, Coarse injectivity, hierarchical hyperbolicity, and semihyperbolicity, preprint (2020), arXiv:2009.14053. · Zbl 1516.20098
[51] Hanner, O., Some theorems on absolute neighborhood retracts, Ark. Mat.1(30) (1951) 389-408. · Zbl 0042.41102
[52] Higson, N., Pedersen, E. K. and Roe, J., \( C^\ast \)-algebras and controlled topology, \(K\)-Theory11 (1996) 209-239. · Zbl 0879.19003
[53] Higson, N. and Roe, J., Analytic K-Homology (Oxford University Press, New York, 2000). · Zbl 0968.46058
[54] Higson, N., Roe, J. and Yu, G., A coarse Mayer-Vietoris principle, Math. Proc. Camb. Philos. Soc.114 (1993) 85-97. · Zbl 0792.55001
[55] Holt, D. F. and Rees, S., Artin groups of large type are shortlex automatic with regular geodesics, Proc. London Math. Soc.104(3) (2012) 486-512. · Zbl 1275.20034
[56] Holt, D. F. and Rees, S., Biautomatic structures in systolic Artin groups, Int. J. Algebra Comput.31(3) (2021) 365-391. · Zbl 1542.20152
[57] Hotchkiss, Ph. K., The boundary of a Busemann space, Proc. Amer. Math. Soc.125(7) (1997) 1903-1912. · Zbl 0876.53049
[58] Houdayer, C. and Isono, Y., Bi-exact groups, strongly ergodic actions and group measure space type III factors with no central sequence, Comm. Math. Phys.348(3) (2016) 991-1015. · Zbl 1367.46049
[59] Hu, S.-T., Theory of Retracts (Wayne State University Press, 1965). · Zbl 0145.43003
[60] Huang, J. and Osajda, D., Large-type Artin groups are systolic, Proc. London Math. Soc., Vol. 120, pp. 95-123, https://doi.org/10.1112/plms.12284. · Zbl 1481.20159
[61] Hurewicz, W. and Wallman, H., Dimension Theory (Princeton University Press, 1948). · Zbl 0036.12501
[62] S. Ivanov, Lebesgue dimension of closures satisfying the Z-set condition. MathOverflow (2010), https://mathoverflow.net/q/38352, (version: 2010-09-10).
[63] Januszkiewicz, T. and Świa̧tkowski, J., Simplicial nonpositive curvature, Publ. Math. de l’I.H.É.S.104 (2006) 1-85. · Zbl 1143.53039
[64] Ji, R. and Ramsey, B., The isocohomological property, higher Dehn functions, and relatively hyperbolic groups, Adv. Math.222 (2009) 255-280. · Zbl 1233.20038
[65] Kahn, D. S., Kaminker, J. and Schochet, C., Generalized homology theories on compact metric spaces, Michigan Math. J.24(2) (1977) 203-224. · Zbl 0384.55001
[66] Laca, M. and Spielberg, J., Purely infinite \(C^\ast \)-algebras from boundary actions of discrete groups, J. Reine Angew. Math.480 (1996) 125-139. · Zbl 0863.46044
[67] Lang, U., Injective hulls of certain discrete metric spaces and groups, J. Topol. Anal.5(3) (2013) 297-331. · Zbl 1292.20046
[68] Mendel, M. and Naor, A., Expanders with respect to Hadamard spaces and random graphs, Duke Math. J.164(8) (2015) 1471-1548. · Zbl 1316.05109
[69] Meyer, R., Combable groups have group cohomology of polynomial growth, Q. J. Math.57(2) (2006) 241-261. · Zbl 1167.20028
[70] Mineyev, I., Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal.11 (2001) 807-839. · Zbl 1013.20034
[71] M. A. Moran, Finite-dimensionality of \(Z\)-boundaries, preprint (2014), arXiv:math/1406.7451v1.
[72] Moran, M. A., Finite-dimensionality of \(Z\)-boundaries, Groups Geom. Dyn.10 (2016) 819-824. · Zbl 1348.55003
[73] Mosher, L., Mapping class groups are automatic, Ann. Math.142(2) (1995) 303-384. · Zbl 0867.57004
[74] Neumann, W. D. and Reeves, L. D., Regular cocycles and biautomatic structures, Int. J. Alg. Comput.6(3) (1996) 313-324. · Zbl 0928.20028
[75] Neumann, W. D. and Reeves, L. D., Central extensions of word hyperbolic groups, Ann. Math.145(1) (1997) 183-192. · Zbl 0871.20032
[76] Niblo, G. A. and Reeves, L. D., The geometry of cube complexes and the complexity of their fundamental groups, Topology37(3) (1998) 621-633. · Zbl 0911.57002
[77] Noskov, G. A., Combing Euclidean buildings, Geom. Topol.4 (2000) 85-116. · Zbl 1047.20031
[78] Ogle, C., Polynomially bounded cohomology and discrete groups, J. Pure Appl. Alg.195 (2005) 173-209. · Zbl 1071.18007
[79] Osajda, D. and Przytycki, P., Boundaries of systolic groups, Geom. Topol.13 (2009) 2807-2880. · Zbl 1271.20056
[80] Ozawa, N., Solid von Neumann algebras, Acta Math.192 (2004) 111-117. · Zbl 1072.46040
[81] Ozawa, N., A Kurosh-type theorem for type \(I I_1\) factors, Int. Math. Res. Not.2006 (2006) O97560. · Zbl 1114.46041
[82] Peifer, D., Artin groups of extra-large type are biautomatic, J. Pure Appl. Alg.110 (1996) 15-56. · Zbl 0872.20036
[83] Phillips, N. Ch., Representable \(K\)-theory for \(\sigma- C^\ast \)-algebras, \(K\)-Theory3(5) (1989) 441-478. · Zbl 0709.46033
[84] Phillips, N. Ch., \(K\)-Theory for Fréchet algebras, Int. J. Math.2(1) (1991) 77-129. · Zbl 0744.46065
[85] Roe, J., Hyperbolic metric spaces and the exotic cohomology Novikov conjecture, \(K\)-Theory4 (1991) 501-512. · Zbl 0756.55003
[86] Roe, J., From foliations to coarse geometry and back, in Analysis and Geometry in Foliated Manifolds (World Scientific Publisher, River Edge, NJ, 1995), pp. 195-205. · Zbl 0992.58501
[87] Roe, J., Index Theory, Coarse Geometry, and Topology of Manifolds, , Vol. 90 (American Mathematical Society, 1996). · Zbl 0853.58003
[88] Roe, J., Lectures on Coarse Geometry, , Vol. 31 (American Mathematical Society, 2003). · Zbl 1042.53027
[89] Roe, J., Warped cones and property A, Geom. Topol.9 (2005) 163-178. · Zbl 1082.53036
[90] Roe, J., Coarse Cohomology and Index Theory on Complete Riemannian Manifolds, Vol. 497 (American Mathematical Society, Providence, RI, 1993). · Zbl 0780.58043
[91] Ruiz, E., Sims, A. and Sørensen, A. P. W., UCT-Kirchberg algebras have nuclear dimension one, Adv. Math.279 (2015) 1-28. · Zbl 1332.46051
[92] Spanier, E., Algebraic Topology (McGraw-Hill, Inc., 1966). · Zbl 0145.43303
[93] Swenson, E. L., Boundary dimension in negatively curved spaces, Geom. Dedicata57(3) (1995) 297-303. · Zbl 0837.53037
[94] Świa̧tkowski, J., Regular path systems and (bi)automatic groups, Geom. Dedicata118 (2006) 23-48. · Zbl 1165.20036
[95] Wulff, Ch.. Coarse co-assembly as a ring homomorphism, J. Noncommut. Geom.10(2) (2016) 471-514. · Zbl 1359.46064
[96] Wulff, Ch., Ring and module structures on \(K\)-theory of leaf spaces and their application to longitudinal index theory, J. Topol.9(4) (2016) 1074-1108. · Zbl 1371.19002
[97] Yu, G., The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math.139(1) (2000) 201-240. · Zbl 0956.19004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.