×

Gleason’s theorem for composite systems. (English) Zbl 1534.81004

Summary: Gleason’s theorem [A. M. Gleason, J. Math. Mech. 6, 885–893 (1957; Zbl 0078.28803)] is an important result in the foundations of quantum mechanics, where it justifies the Born rule as a mathematical consequence of the quantum formalism. Formally, it presents a key insight into the projective geometry of Hilbert spaces, showing that finitely additive measures on the projection lattice \(\mathcal{P}(\mathcal{H})\) extend to positive linear functionals on the algebra of bounded operators \(\mathcal{B}(\mathcal{H})\). Over many years, and by the effort of various authors, the theorem has been broadened in its scope from type I to arbitrary von Neumann algebras (without type \(\mathrm{I}_2\) factors). Here, we prove a generalisation of Gleason’s theorem [loc. cit.] to composite systems. To this end, we strengthen the original result in two ways: first, we extend its scope to dilations in the sense of M. A. Neumark [C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 41, 359–361 (1943; Zbl 0061.25410)] and W. F. Stinespring [Proc. Am. Math. Soc. 6, 211–216 (1955; Zbl 0064.36703)] and second, we require consistency with respect to dynamical correspondences on the respective (local) algebras in the composition [E. M. Alfsen and F. W. Shultz, Commun. Math. Phys. 194, No. 1, 87–108 (1998; Zbl 0918.46060)]. We show that neither of these conditions changes the result in the single system case, yet both are necessary to obtain a generalisation to bipartite systems.
{© 2023 The Author(s). Published by IOP Publishing Ltd}

MSC:

81P05 General and philosophical questions in quantum theory
62H20 Measures of association (correlation, canonical correlation, etc.)
46L10 General theory of von Neumann algebras
81P15 Quantum measurement theory, state operations, state preparations
51A05 General theory of linear incidence geometry and projective geometries
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)

References:

[1] Hardy, L., Quantum theory from five reasonable axioms (2001)
[2] Chiribella, G.; D’Ariano, G. M.; Perinotti, P., Informational derivation of quantum theory, Phys. Rev. A, 84 (2011) · Zbl 1271.81010 · doi:10.1103/PhysRevA.84.012311
[3] Jaeger, G., Information and the reconstruction of quantum physics, Ann. Phys., 531 (2019) · Zbl 07759713 · doi:10.1002/andp.201800097
[4] Gleason, A., Measures on the closed subspaces of a Hilbert space, J. Math. Mech., 6, 885-93 (1957) · Zbl 0078.28803
[5] Christensen, E., Measures on projections and physical states, Commun. Math. Phys., 86, 529-38 (1982) · Zbl 0507.46052 · doi:10.1007/BF01214888
[6] Yeadon, F. J., Measures on projections in \(####\)-algebras of type \(####\), Bull. London Math. Soc., 15, 139-45 (1983) · Zbl 0522.46045 · doi:10.1112/blms/15.2.139
[7] Yeadon, F. J., Finitely additive measures on projections in finite \(####\)-algebras, Bull. London Math. Soc., 16, 145-50 (1984) · Zbl 0574.46048 · doi:10.1112/blms/16.2.145
[8] Maeda, S., Probability measures on projections in von Neumann algebras, Rev. Math. Phys., 1, 235-90 (1989) · Zbl 0718.46046 · doi:10.1142/S0129055X89000122
[9] Kadison, R. V.; Ringrose, J. R., Fundamentals of the Theory of Operator Algebras. Volume II: Advanced Theory (Pure and Applied Mathematics) (1986), Academic · Zbl 0601.46054
[10] Bell, J. S., On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys., 38, 447-52 (1966) · Zbl 0152.23605 · doi:10.1103/RevModPhys.38.447
[11] Kochen, S.; Specker, E. P., The problem of hidden variables in quantum mechanics, J. Math. Mech., 17, 59-87 (1967) · Zbl 0156.23302
[12] Döring, A.; Frembs, M., Contextuality and the fundamental theorems of quantum mechanics, J. Math. Phys., 63 (2022) · Zbl 1509.81009 · doi:10.1063/5.0012855
[13] Busch, P.; Lahti, P.; Pellonpää, J.; Ylinen, K., Quantum Measurement, Theoretical and Mathematical Physics (2016), Springer International Publishing · Zbl 1416.81001
[14] Isham, C. J.; Butterfield, J., Topos perspective on the Kochen-Specker theorem: I. Quantum states as generalized valuations, Int. J. Theor. Phys., 37, 2669-733 (1998) · Zbl 0979.81018 · doi:10.1023/A:1026680806775
[15] Butterfield, J.; Isham, C. J., A topos perspective on the Kochen-Specker theorem: II. Conceptual aspects and classical analogues, Int. J. Theor. Phys., 38, 827-59 (1999) · Zbl 1007.81009 · doi:10.1023/A:1026652817988
[16] Hamilton, J.; Isham, C. J.; Butterfield, J., Topos perspective on the Kochen-Specker theorem: III. Von Neumann algebras as the base category, Int. J. Theor. Phys., 39, 1413-36 (2000) · Zbl 1055.81004 · doi:10.1023/A:1003667607842
[17] Butterfield, J.; Isham, C. J., Topos perspective on the Kochen-Specker theorem: IV. Interval valuations, Int. J. Theor. Phys., 41, 613-39 (2002) · Zbl 1021.81002 · doi:10.1023/A:1015276209768
[18] Döring, A.; Isham, C. J., A topos foundation for theories of physics: I. Formal languages for physics, J. Math. Phys., 49 (2008) · Zbl 1152.81408 · doi:10.1063/1.2883740
[19] Döring, A.; Isham, C. J., A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory, J. Math. Phys., 49 (2008) · Zbl 1152.81409 · doi:10.1063/1.2883742
[20] Döring, A.; Isham, C. J., A topos foundation for theories of physics: III. The representation of physical quantities with arrows \(####\), J. Math. Phys., 49 (2008) · Zbl 1152.81410 · doi:10.1063/1.2883777
[21] Döring, A.; Isham, C. J., A topos foundation for theories of physics: IV. Categories of systems, J. Math. Phys., 49 (2008) · Zbl 1152.81411 · doi:10.1063/1.2883826
[22] Heunen, C.; Landsman, N. P.; Spitters, B., A topos for algebraic quantum theory, Commun. Math. Phys., 291, 63-110 (2009) · Zbl 1209.81147 · doi:10.1007/s00220-009-0865-6
[23] Heunen, C.; Landsman, N. P.; Spitters, B., Bohrification of operator algebras and quantum logic, Synthese, 186, 719-52 (2012) · Zbl 1275.03166 · doi:10.1007/s11229-011-9918-4
[24] Döring, A.; Isham, C. J.; Coecke, B., “What is a thing?”: topos theory in the foundations of physics, New Structures for Physics (Lecture Notes in Physics), pp 753-937 (2011), Springer · Zbl 1253.81011
[25] Döring, A., Kochen-Specker theorem for von Neumann algebras, Int. J. Theor. Phys., 44, 139-60 (2005) · Zbl 1099.81011 · doi:10.1007/s10773-005-1490-6
[26] de Groote, H. F., Observables IV: the presheaf perspective (2007)
[27] Döring, A., Generalised Gelfand spectra of nonabelian unital \(####\)-algebras (2012)
[28] Bunce, L. J.; Maitland Wright, J. D., The Mackey-Gleason problem, Bull. Am. Math. Soc., 26, 288-94 (1992) · Zbl 0759.46054 · doi:10.1090/S0273-0979-1992-00274-4
[29] Kläy, M., Tensor products and probability weights, Int. J. Theor. Phys., 26, 199-219 (1987) · Zbl 0641.46049 · doi:10.1007/BF00668911
[30] Wallach, N. R., An unentangled Gleason’s theorem, Am. Math. Soc., 305, 291-8 (2002) · Zbl 1063.81038
[31] Frembs, M.; Döring, A., Characterization of nonsignaling bipartite correlations corresponding to quantum states, Phys. Rev. A, 106 (2022) · doi:10.1103/PhysRevA.106.062420
[32] Haagerup, U., The standard form of von Neumann algebras, Math. Scand., 37, 271-83 (1975) · doi:10.7146/math.scand.a-11606
[33] Naimark, M. A., On a representation of additive operator set functions, Dokl. Akad. Sci. SSSR, 41, 359-61 (1943) · Zbl 0061.25410
[34] Stinespring, W. F., Positive functions on \(####\)-algebras, Proc. Am. Math. Soc., 6, 211-6 (1955) · Zbl 0064.36703 · doi:10.2307/2032342
[35] Bunce, L. J.; Maitland Wright, J. D., On Dye’s theorem for Jordan operator algebras, Expo. Math., 11, 91-95 (1993) · Zbl 0772.46037
[36] Størmer, E., Decomposable positive maps on \(####\)-algebras, Proc. Am. Math. Soc., 86, 402-402 (1982) · Zbl 0526.46054 · doi:10.1090/S0002-9939-1982-0671203-5
[37] Mccrimmon, K., A Taste of Jordan Algebras (2004), Springer · Zbl 1044.17001
[38] Alfsen, E. M.; Shultz, F. W., On orientation and dynamics in operator algebras. Part I, Commun. Math. Phys., 194, 87-108 (1998) · Zbl 0918.46060 · doi:10.1007/s002200050350
[39] Grgin, E.; Petersen, A., Duality of observables and generators in classical and quantum mechnics, J. Math. Phys., 15, 764-9 (1974) · Zbl 0287.17003 · doi:10.1063/1.1666726
[40] Alfsen, E. M.; Shultz, F. W., Orientation in operator algebras, Proc. Natl Acad. Sci. USA, 95, 6596-601 (1998) · Zbl 0903.46055 · doi:10.1073/pnas.95.12.6596
[41] Baez, J.; Read, J.; Teh, N. J., Getting to the Bottom of Noether’s Theorem, The Philosophy and Physics of Noether’s Theorems: A Centenary Volume, 66-99 (2022), Cambridge University Press · Zbl 1521.70022 · doi:10.1017/9781108665445.005
[42] Connes, A., A factor not anti-isomorphic to itself, Ann. Math., 101, 536-54 (1975) · Zbl 0315.46058 · doi:10.2307/1970940
[43] Frembs, M.; Cavalcanti, E. G., Variations on the Choi-Jamiołkowski isomorphism (2022)
[44] Choi, M-D, Completely positive linear maps on complex matrices, Linear Algebr. Appl., 10, 285-90 (1975) · Zbl 0327.15018 · doi:10.1016/0024-3795(75)90075-0
[45] Belavkin, V. P.; Staszewski, P., A Radon-Nikodym theorem for completely positive maps, Rep. Math. Phys., 24, 49-55 (1986) · Zbl 0633.46060 · doi:10.1016/0034-4877(86)90039-X
[46] Størmer, E., The analogue of Choi matrices for a class of linear maps on von Neumann algebras, Int. J. Math., 26, 12 (2014) · Zbl 1329.46058 · doi:10.1142/S0129167X15500184
[47] Blackadar, B2006Operator Algebras: Theory of \(####\)-algebras and Von Neumann AlgebrasEncyclopaedia of Mathematical SciencesSpringer · Zbl 1092.46003
[48] Hamhalter, J., Dye’s theorem and Gleason’s theorem for \(####\)-algebras, J. Math. Anal. Appl., 422, 1103-15 (2015) · Zbl 1320.46041 · doi:10.1016/j.jmaa.2014.09.040
[49] Bunce, L. J.; Maitland Wright, J. D., Quantum measures and states on Jordan algebras, Commun. Math. Phys., 98, 187-202 (1985) · Zbl 0579.46049 · doi:10.1007/BF01220507
[50] Alfsen, E. M.; Shultz, F. W., State Spaces of Operator Algebras: Basic Theory, Orientations and \(####\) -Products (2001), Birkhäuser · Zbl 0983.46047
[51] Haagerup, U.; Hanche-Olsen, H., Tomita-Takesaki theory for Jordan algebras, J. Oper. Theory, 11, 343-64 (1984) · Zbl 0567.46037
[52] Haag, R.; Kastler, D., An algebraic approach to quantum field theory, J. Math. Phys., 5, 848-61 (1964) · Zbl 0139.46003 · doi:10.1063/1.1704187
[53] Frembs, M., Bipartite entanglement and the arrow of time, Phys. Rev. A, 107 (2023) · doi:10.1103/PhysRevA.107.022218
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.