×

Quantum measures and states on Jordan algebras. (English) Zbl 0579.46049

In most mathematical formulations of the foundations of quantum mechanics, the bounded observables of a physical system are identified with a real linear space, L, of bounded self-adjoint operators on a Hilbert space, H. Those bounded observables which correspond to the projections in L form a complete orthomodular lattice, P, otherwise known as the lattice of ”questions” or the quantum logic of the physical system. For x,y in \(B(H)_{sa}\), the physicist P. Jordan defined the Jordan product of x and y by \[ x\circ y=(xy+yx)=(x+y)^ 2+x^ 2-y^ 2. \] So it is reasonable to assume that L is a Jordan algebra of self- adjoint operators on H which is closed in the weak operator topology. Hence L is a JBW-algebra. Mackey’s Axiom VII, makes the much stronger assumption that \(L=B(H)_{sa}\). Mackey states that, unlike his other axioms, Axiom VII has no physical basis but is made for technical convenience. He goes on to say ”It would be interesting to have a thorough study of the consequences of modifying Axiom VII... ” One of the technical advantages of Axiom VII is that it allows the use of Gleason’s theorem to identify the completely additive probability measures on P with the normal states.
Recently, the results of Christensen together with Yeadon’s work on Type \(II_ 1\) algebras, has shown that Gleason’s theorem can be extended to any von Neumann algebra with no Type \(I_ 2\) direct summand.
The main purposes of this paper is to extend the Gleason-Christensen- Yeadon theorem from von Neumann algebras to JBW-algebras. This removes one of the mathematical difficulties arising from weakening Axiom VII to the physically plausible assumption that L is a JBW-algebra.
The main results of this paper may be summarized as follows:
Theorem. Let M be a JBW-algebra with P(M) its lattice of projections. Let M be either type \(I_ n\) for \(3\leq n<\infty\), or type \(I_{\infty}\), or without type \(I_ 2\) direct summand. Then any measure on P(M) is the restriction of a positive linear functional on M.
Corollary. Let M be a JBW-algebra with no type \(I_ 2\) direct summand. Then any countably additive measure on P(M) is the restriction of a positive linear functional on M.
We make essential use of the methods of Christensen, Yeadon, Gunson, and Aarnes. It turns out that for the type \(II_ 1\) case the methods of Yeadon can be generalized fairly easily. On the other hand, we need to surmount a number of technical obstacles before we can cope with the properly infinite JBW-algebras. Indeed, type \(I_ n\), for \(n\geq 3\) gives rise to some non-trivial difficulties.

MSC:

46L99 Selfadjoint operator algebras (\(C^*\)-algebras, von Neumann (\(W^*\)-) algebras, etc.)
17C65 Jordan structures on Banach spaces and algebras
46L51 Noncommutative measure and integration
46L53 Noncommutative probability and statistics
46L54 Free probability and free operator algebras
46L30 States of selfadjoint operator algebras
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
Full Text: DOI

References:

[1] Aarnes, J.F.: Quasi-states onC*-algebras. Trans. Am. Math. Soc.149, 601-625 (1970) · Zbl 0212.15403
[2] Ajupov, S.A.: Extension of traces and type criterions for Jordan algebras of self-adjoint operators. Math. Z.181, 253-268 (1982) · doi:10.1007/BF01215023
[3] Alfsen, E.M., Shultz, F.W.: State spaces of Jordan algebras. Acta. Math.140, 155-190 (1978) · Zbl 0397.46066 · doi:10.1007/BF02392307
[4] Alfsen, E.M., Shultz, F.W., Hanché-Olsen, H.: State spaces ofC*-algebras. Acta. Math.144, 267-305 (1980) · Zbl 0458.46047 · doi:10.1007/BF02392126
[5] Alfsen, E.M., Shultz, F.W., Størmer, E.: A Gelfand Neumark theorem for Jordan algebras. Adv. Math.28, 11-56 (1978) · Zbl 0397.46065 · doi:10.1016/0001-8708(78)90044-0
[6] Bunce, L.J.: Type I JB-algebras. Quart. J. Math. Oxford (2)34, 7-19 (1983) · Zbl 0539.46045 · doi:10.1093/qmath/34.1.7
[7] Christensen, E.: Measures on projections and physical states. Commun. Math. Phys.86, 529-538 (1982) · Zbl 0507.46052 · doi:10.1007/BF01214888
[8] Edwards, C.M.: On the facial structure of a JB-algebra. J. Lond. Math. Soc.19, 335-344 (1979) · doi:10.1112/jlms/s2-19.2.335
[9] Edwards, C.M.: On the centres of hereditary JBW-subalgebras of a JBW-algebra. Math. Proc. Cambs. Phil. Soc.85, 317-324 (1979) · Zbl 0395.46038 · doi:10.1017/S0305004100055730
[10] Effros, E., Størmer, E.: Jordan algebras of self-adjoint operators. Trans. Am. Math. Soc.127, 312-315 (1967) · Zbl 0171.11502 · doi:10.1090/S0002-9947-1967-0206733-X
[11] Gil de Lamadrid, J.: Measures and tensors. Trans. Am. Math. Soc.114, 98-121 (1965) · Zbl 0186.46604
[12] Gleason, A.M.: Measures on closed subspaces of a Hilbert space. J. Math. Mech.6, 885-893 (1957) · Zbl 0078.28803
[13] Grothendieck, A.: Produit tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc.16 (1955)
[14] Gunson, J.: Physical states on quantum logics. I. Ann. Inst. Henri Poincaré. Sect. A,XVII, 295-311 (1972)
[15] Jacobson, N.: Structure and representation of Jordan algebras. Am. Math. Soc. Colloq. Publ.39. Providence, RI: Am. Math. Soc. 1968 · Zbl 0218.17010
[16] Janssen, G.: Die Struktur endlicher schwach abgeschlossener Jordan algebras. II. Manuscripta Math.16, 307-332 (1975) · Zbl 0318.17014 · doi:10.1007/BF01323463
[17] Jordan, P., von Neumann, J., Wigner, E.: On an algebraic generalisation of the quantum mechanical formalism. Ann. Math.35, 29-64 (1935) · JFM 60.0902.02 · doi:10.2307/1968117
[18] Mackey, G.W.: Quantum mechanics and Hilbert space. Am. Math. Monthly64, 45-57 (1957) · Zbl 0137.23805 · doi:10.2307/2308516
[19] Mackey, G.W.: The mathematical foundations of quantum mechanics. New York: Benjamin 1963 · Zbl 0114.44002
[20] Matveichuk, M.S.: Description of the finite measures in semifinite algebras. Funct. Anal. Appl.15, 187-197 (1982) · Zbl 0487.46039 · doi:10.1007/BF01089923
[21] Pedersen, G.K.:C*-algebras and their automorphism groups. New York: Academic Press 1979 · Zbl 0416.46043
[22] von Neumann, J.: On an algebraic generalisation of the quantum mechanical formalism. Math. Sb.1, 415-487 (1936) · Zbl 0015.24505
[23] Sakai, S.:C*-algebras andW*-algebras. Berlin, Heidelberg, New York: Springer 1971 · Zbl 0219.46042
[24] Semadeni, Z.: Barach spaces of continuous functions, Vol. I. Monog. Matematyczne, 55. Warsaw: Polish Scientific Publ. 1971 · Zbl 0225.46030
[25] Shultz, F.W.: On normed Jordan algebras which are Banach dual spaces. J. Funct. Anal.31, 360-376 (1979) · Zbl 0421.46043 · doi:10.1016/0022-1236(79)90010-7
[26] Stacey, P.J.: TypeI 2 JBW-algebras. Quart. J. Math. Oxford (2),33 115-127 (1982) · Zbl 0449.46058 · doi:10.1093/qmath/33.1.115
[27] Størmer, E.: On the Jordan structure ofC*-algebras. Trans. Am. Math. Soc.120, 438-447 (1965) · Zbl 0136.11401
[28] Størmer, E.: Jordan algebras of TypeI. Acta Math.115, 165-184 (1965) · Zbl 0139.30502 · doi:10.1007/BF02392206
[29] Størmer, E.: Irreducible Jordan algebras of self-adjoint operators. Trans. Am. Math. Soc.130, 153-166 (1968) · Zbl 0164.44602
[30] Takesaki, M.: Theory of operator algebras. I. Berlin, Heidelberg, New York: Springer 1979 · Zbl 0436.46043
[31] Topping, D.: Jordan algebras of self-adjoint operators. Mem. Am. Math. Soc.53 (1965) · Zbl 0149.09801
[32] Wright, J.D.M.: JordanC*-algebras. Mich. Math. J.24, 291-302 (1977) · Zbl 0384.46040 · doi:10.1307/mmj/1029001946
[33] Yeadon, F.J.: Measures on projections inW*-algebras of TypeII. Bull. Lond. Math. Soc.15, 139-145 (1983) · Zbl 0522.46045 · doi:10.1112/blms/15.2.139
[34] Yeadon, F.J.: Finitely additive measures on projections in finiteW*-algebras (to appear) · Zbl 0574.46048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.