×

Analysis of heat transfer on MHD Jeffrey nanofluid flow over nonlinear elongating surface of variable thickness. (English) Zbl 1534.76003

Summary: Due to its vast application in the engineering discipline, nanofluids have become a popular subject of investigation in the mathematical and physical research. The enhancement of thermal conductivity is a peculiar feature of nanofluids. The fluid model being investigated in the current study is the Jeffrey nanofluid commonly found in many industrial processes such as lubrication, natural gas networks, spray processes, cooling of nuclear reactors and many others. We study the heat transfer affects on the flow of a Jeffery non-Newtonian fluid with submersed nanoparticles, in the presence of applied magnetic field, along a nonlinear stretchable surface, discussing features such as Brownian and thermophoresis diffusion. The effects of viscous dissipation, ohmic heating and thermal radiation on the flow characteristic have also been analyzed. Solution for the nondimensional boundary value problem have been obtained numerically by considering the effects of non-Newtonian fluid parameter. The graphical illustration of the obtained results highlights the effects of numerous physical parameters on the flow dynamics in terms of fluid velocities, thermal profiles and nanoparticles concentration.
© 2021 Wiley-VCH GmbH

MSC:

76A05 Non-Newtonian fluids
76W05 Magnetohydrodynamics and electrohydrodynamics
76T20 Suspensions
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76M20 Finite difference methods applied to problems in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow
80A21 Radiative heat transfer
Full Text: DOI

References:

[1] Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA. ASME, FED, 231/MD, 66, 99-105 (1995)
[2] Qasim, M., Khan, Z.H., Khan, W.A., Shah, I.A.: MHD boundary layer slip flow and heat transfer of Ferrofluid along a stretching cylinder with prescribed heat flux. PLoS ONE.9 (1), e83930 (2014)
[3] Dharmalingam, R., Sivagnanaprabhu, K.K., Kumar, B.S., Thirumalai, R.: Nano materials and nanofluids: an innovative technology study for new paradigms for technology enhancement. Procedia Eng.97, 1434-1441 (2014)
[4] Khalili, S., Tamim, H., Khalili, A., Rashidi, M.M.: Unsteady convective heat and mass transfer in pseudoplastic nanofluid over a stretching wall. Adv. Powder Technol.26, 1319-1326 (2015)
[5] Kamil, M.S., Syeal, R.A., Abdulhussein, A.A.: Heat transfer enhancement using nanofluids: a review of the recent literature. Am J. Nano Res. Appl.4 (1), 1-5 (2016)
[6] Wankhede, M., Warungase, S., Shinde, K., Yadav, V., Bandewar, A.: A review paper on cooling ability of nanofluids. Int. J. Sci. Eng. Res.8 (3), 137-143 (2017)
[7] Awais, M., Hayat, T., Muqaddass, N., Ali, A., Aqsa,Khan, S.E.: Nanoparticles and nonlinear thermal radiation properties in the rheology of polymeric material. Results Phys.8, 1038-1045 (2018)
[8] Ali, A., Shehzadi, K., Sulaiman, M., Asghar, S.: Heat and mass transfer analysis of 3D Maxwell nanofluid over an exponentially stretching surface. Phys. Scr.94 (6), 065206 (2019)
[9] Alblawi, A., Malik, M.Y., Nadeem, S., Abbas, N.: Buongiorno’s nanofluid model over a curved exponentially stretching surface. Processes7 (10), 665 (2019)
[10] Hussain, F., Hussain, A., Nadeem, S.: Thermophoresis and Brownian model of Pseudo‐plastic nanofluid flow over a vertical slender cylinder. Math. Probl. Eng.2020, 8428762 (2020) · Zbl 1459.76005
[11] Ali, A., Akhtar, J., Anjum, H.J., Awais, M., Shah, Z., Kumam, P.: 3D nanofluid flow over exponentially expanding surface of Oldroyd‐B fluid. Ain Shams Eng. J. (2021) https://doi.org/10.1016/j.asej.2021.01.026 · doi:10.1016/j.asej.2021.01.026
[12] Hussain, A., Rehman, A., Nadeem, S.,et al.: A combined convection Carreay‐Yasuda nanofluid model over a convective heated surface near a stagnation point: a numerical study. Math. Probl. Eng.2021, 6665743 (2021) · Zbl 1512.76119
[13] Rehaman, A., Hussain, A., Nadeem, S.: Physical aspects of convective and radiative molecular theory of liquid originated nanofluid flow in the existence of variable properties. Phys. Scr.96, 035219 (2021)
[14] Ver Strate, G., Struglinski, M.J.: Polymers as Lubricating‐Oil Viscosity Modifiers, Chapter 15, 256-272 (1991)
[15] Balmforth, N.J., Creaster, R.V.: A consistent thin‐layer theory for Bingham plastics. J. Non Newtonian Fluid Mech.84 (1), 65-81 (1999) · Zbl 0936.76002
[16] Sarpkaya, T., Rainey, P.G.: Stagnation point flow of a second‐order viscoelastic fluid. Acta Mech.11, 237-246 (1971) · Zbl 0228.76007
[17] Sahoo, B., Poncet, S.: Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial slip boundary condition. Int. J. Heat Mass Transfer.54 (23-24), 5010-5019 (2011) · Zbl 1226.80022
[18] Khan, I., Fakhar, K., Anwar, M.I.: Hydromagnetic rotating flows of an Oldroyd‐B fluid in a porous medium, Special Topics & Reviews in Porous Media3 (1), 89-95 (2012)
[19] Qasim, M.: Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink. Alex. Eng. J.52 (4), 571-575 (2013)
[20] Tripathi, D., Beg, O.A.: Peristaltic propulsion of generalized Burgers’ fluids through a non‐uniform porous medium: a study of chime dynamics through the diseased intestine. Math. Biosci.248, 67-77 (2014) · Zbl 1310.92019
[21] Abro, K.A., Shaikh, A.A.: Exact analytical solutions for Maxwell fluid over an oscillating plane. Sci Int.27 (2), 923-929 (2015)
[22] Ali, A., Asghar, S.: Analytic solution for oscillatory flow in a channel for Jeffrey fluid. J. Aerosp. Eng.27 (3), 644-651 (2014)
[23] Akram, S., Zafar, M., Nadeem, S.: Peristaltic transport of a Jeffrey fluid with double‐diffusive convection in nanofluids in the presence of inclined magnetic field. Int. J. Geom. Meth. Mod. Phys.15 (11), 1850181 (2018) · Zbl 1458.76003
[24] Saleem, S., Al‐Qarni, M.M., Nadeem, S., Sandeep, N.: Convective heat and mass transfer in magneto Jeffrey fluid flow on a rotating cone with heat source and chemical reaction. Commun. Theor. Phys.70 (5), 534 (2018)
[25] Ali, A., Saleem, S., Mumraiz, S., et al.: Investigation on TiO_2‐Cu/H_2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffery material. J. Therm. Anal. Calorim.143, 1985-1996 (2021)
[26] Nadeem, S., Akhtar, S., Saleem, A.: Peristaltic flow of a heated Jeffrey fluid inside an elliptic duct: streamline analysis. Appl. Math. Mech.42, 583-592 (2021) · Zbl 1479.76007
[27] Sakiadis, B.C.: Boundary layer behavior on continuous solid surfaces: 1. Boundary layer equations for two‐dimensional and axisymmetric flow. AIChE J.7, 26-28 (1961)
[28] Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys.21, 645-647 (1970)
[29] Banks, W.H.H.: Similarity solutions of the boundary‐layer equations for a stretching wall. J de Mécanique Theorique et Appliquee.2, 375-392 (1983) · Zbl 0538.76039
[30] Pop, I., Na, T.Y.: A note on MHD flow over a stretching permeable surface. Mech. Res. Commun.25 (3), 263-269 (1998) · Zbl 0979.76097
[31] Magyari, E., Keller, B.: Exact solutions for self‐similar boundary‐layer flows induced by permeable stretching walls. Eur J Mechanics B‐Fluids.19, 109-122 (2000) · Zbl 0976.76021
[32] Liao, S.J.: On the analytic solution of magneto hydro dynamic flows of non‐Newtonian fluids over a stretching sheet. J. Fluid Mech.488, 189-212 (2003) · Zbl 1063.76671
[33] Liao, S.J.: An analytic solution of unsteady boundary‐layer flows caused by an impulsively stretching plate. Commun Nonlinear Sci Numer Simul.11, 326-339 (2006) · Zbl 1078.76022
[34] Liu, I.C., Anderson, H.I.: Heat transfer over a bidirectional stretching sheet with variable thermal conditions. Int. J. Heat Mass Transfer.51, 4018-4024 (2008) · Zbl 1148.80329
[35] Xu, H., Liao, S.J.: Laminar flow and heat transfer in the boundary‐layer of non‐Newtonian fluids over a stretching flat sheet. Comput. Math. Appl.54 (9), 1425-1431 (2009) · Zbl 1186.76616
[36] Hayat, T., Mustafa, M., Sajid, M.: On mass transfer in three‐dimensional flow of a viscoelastic fluid. Numer. Methods Partial Differ. Equations.27, 915-936 (2011) · Zbl 1316.76006
[37] Mukhopadhyay, S.: MHD boundary layer flow and heat transfer over an exponentially stretching sheet embedded thermally stratified medium. Alex. Eng. J.52, 259-265 (2013)
[38] Khan, J.A., Mustafa, M., Hayat, T., Farooq, M.A., Alsaedi, A., Liao, S.J.: On model for three‐dimensional flow of nanofluid: an application to solar energy. J. Mol. Liq.194, 41-47 (2014)
[39] Rehman, F.U., Nadeem, S., Haq, R.U.: Heat transfer analysis for three‐dimensional stagnation‐point flow over an exponentially stretching surface. Chin. J. Phys.55, 1552-1560 (2017)
[40] Ali, A., Khan Marwat, D.N., Shah, S.A.: Viscous flow in a porous channel with stretching and shrinking walls. U Politeh BUCH SER A.81 (1), 183-196 (2019) · Zbl 1513.76138
[41] Bilal, M., Khan Marwat, D.N., Ali, A.: Flow of a viscous fluid over an annular rotating and porous disk with stretching (shrinking) effects. Rev. Mex. Fis.66 (2), 171-179 (2020)
[42] Ali, A., Khan Marwat, D.N., Ali, A.: Analysis of flow and heat transfer over stretching/shrinking and porous surfaces. J. Plast. Film Sheeting (2021). https://doi.org/10.1177/87560872911025805 · doi:10.1177/87560872911025805
[43] Vajravelu, K., Prasad, K.V., Santhi, S.R.: Axisymmetric magneto‐hydrodynamic (MHD) flow and heat transfer at a non‐isothermal stretching cylinder. Appl. Math. Comput.219 (8), 3993-4005 (2012) · Zbl 1311.76148
[44] Mukhopadhyay, S.: MHD boundary layer slip flow along a stretching cylinder. Ain Shams Eng. J.4, 317-324 (2013)
[45] Das, S., Jana, R.N., Makinde, O.D.: MHD boundary layer slip flow and heat transfer of nanofluid past a vertical stretching sheet with non‐uniform heat generation/Absorption. Int. J. Nanosci.13, 1450019 (2014)
[46] Haq, R., Khan, Z.H., Akbar, N.S., Nadeem, S.: Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys. E: Low‐Dimens. Syst. Nanostructures.65, 17-23 (2015)
[47] Awais, M., Hayat, T., Ali, A., Irum, S.: Velocity, thermal and concentration slip effect on a magneto‐hydrodynamic nanofluid flow. Alex. Eng. J.55, 2107-‐2114 (2016)
[48] Bilal, M., Sagheer, M., Hussain, S.: Numerical study of magnetohydrodynamics and thermal radiation on Williamson nanofluid flow over a stretching cylinder with variable thermal conductivity. Alex. Eng. J.57 (4), 3281-‐3289 (2018)
[49] Raza, J.: Thermal radiation and slip effects on MHD stagnation point flow of casson fluid over a convective stretching sheet. J. Propul. Power Res.8, 136-‐148 (2019)
[50] Amjad, M., Zehra, I., Nadeem, S., Abbas, N., Saleem, A., Issakhov, A.: Influence of Lorentz force and induced magnetic field effects on Casson micropolar nanofluid flow over a permeable curved stretching/shrinking surface under the stagnation region. Surf. Interfaces.21, 100766 (2020)
[51] Rizwana, R., Hussain, A., Nadeem, S.: Mix convection non ‐ boundary layer flow of unsteady MHD oblique stagnation point flow of nanofluid. Int. Commun. Heat Mass Transfer.124, 105285 (2021)
[52] Abbas, N., Nadeem, S., Saleem, A., Malik, M.Y., Issakhov, A., Alharbi, F.M.: Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder. Chin. J. Phys.69, 109-117 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.