×

Positive fixed points of cubic operators on \(\mathbb{R}^2\) and Gibbs measures. (English) Zbl 1534.60143

Summary: One model with nearest neighbour interactions of spins with values from the set \([0,1]\) on the Cayley tree of order three is considered in the paper. Translation-invariant Gibbs measures for the model are studied. Results are proved by using properties of the positive fixed points of a cubic operator in the cone \(\mathbb{R}_+^2 \).

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B05 Classical equilibrium statistical mechanics (general)
82B26 Phase transitions (general) in equilibrium statistical mechanics

References:

[1] H.O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics, 9, 2nd edn., Walter de Gruyter, Berlin, 2011 · Zbl 1225.60001
[2] U.A. Rozikov, Gibbs mesaures on Cayley tree, World Scientific, 2013 · Zbl 1278.82002
[3] F. Spitzer, “Markov random fields on an infinite tree”, Ann. Prob., 3 (1975), 387-398 · Zbl 0313.60072 · doi:10.1214/aop/1176996347
[4] Y.M. Suhov, U.A. Rozikov, “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46 (2004), 197-212 · Zbl 1139.90338 · doi:10.1023/B:QUES.0000021149.43343.05
[5] S. Zachary, “Countable state space Markov random fields and Markov chains on trees”, Ann. Prob., 11 (1983), 894-903 · Zbl 0524.60056 · doi:10.1214/aop/1176993439
[6] P.M. Bleher, N.N. Ganikhodjaev, “On pure phases of the Ising model on the Bethe lattice”, Theor. Probab. Appl., 35 (1990), 216-227 · Zbl 0715.60122 · doi:10.1137/1135031
[7] P.M. Bleher, J. Ruiz, Z.V. Agrebnov, “On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice”, Journ. Statist. Phys., 79 (1995), 473-482 · Zbl 1081.82515 · doi:10.1007/BF02179399
[8] N.N. Ganikhodjaev, “On pure phases of the ferromagnet Potts with three states on the Bethe lattice of order two”, Theor. Math. Phys., 85 (1990), 163-175
[9] N.N. Ganikhodjaev, U.A. Rozikov, “Description of periodic extreme Gibbs measures of some lattice model on the Cayley tree”, Theor. and Math. Phys., 111 (1997), 480-486 · Zbl 0964.82504 · doi:10.1007/BF02634202
[10] N.N. Ganikhodjaev, U.A. Rozikov, “The Potts model with countable set of spin values on a Cayley Tree”, Letters Math. Phys., 75 (2006), 99-109 · Zbl 1101.82003 · doi:10.1007/s11005-005-0032-8
[11] N.N. Ganikhodjaev, U.A. Rozikov, “On Ising model with four competing interactions on Cayley tree”, Math. Phys. Anal. Geom., 12 (2009), 141-156 · Zbl 1185.60112 · doi:10.1007/s11040-009-9056-0
[12] C. Preston, Gibbs states on countable sets, Cambridge University Press, London, 1974 · Zbl 0297.60054
[13] U.A. Rozikov, “Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions”, Theor. and Math. Phys., 112 (1997), 929-933 · Zbl 0978.82506 · doi:10.1007/BF02634109
[14] B. Jahnel, K. Christof, G. Botirov, “Phase transition and critical value of nearest-neighbor system with uncountable local state space on Cayley tree”, Math. Phys. Anal. Geom., 17 (2014), 323-331 · Zbl 1310.82015 · doi:10.1007/s11040-014-9158-1
[15] Yu.Kh. Eshkabilov, F.H. Haydarov, U.A. Rozikov, “Non-uniqueness of Gibbs Measure for Models with Uncountable Set of Spin Values on a Cayley Tree”, J. Stat. Phys., 147 (2012), 779-794 · Zbl 1252.82026 · doi:10.1007/s10955-012-0494-x
[16] E.Yu. Khshkabilov, F.H. Haydarov, U.A. Rozikov, “Uniqueness of Gibbs Measure for Models With Uncountable Set of Spin Values on a Cayley Tree”, Math. Phys. Anal. Geom., 16 (2013), 1-17 · Zbl 1277.82008 · doi:10.1007/s11040-012-9118-6
[17] Yu.Kh. Eshkabilov, U.A. Rozikov, G.I. Botirov, “Phase Transitions for a Model with Uncountable Set of Spin Values on a Cayley Tree”, Lobachevskii Journal of Mathematics, 34:3 (2013), 256-263 · Zbl 1276.05060 · doi:10.1134/S1995080213030050
[18] U.A. Rozikov, Yu.Kh. Eshkabilov, “On models with uncountable set of spin values on a Cayley tree: Integral equations”, Math. Phys. Anal. Geom., 13 (2010), 275-286 · Zbl 1252.82034 · doi:10.1007/s11040-010-9079-6
[19] U.A. Rozikov, F.H. Haydarov, “Periodic Gibbs measures for models with uncountable set of spin values on a Cayley tree”, I.D.A.Q.P., 18 (2015), 1-22 · Zbl 1311.82005
[20] Yu.Kh. Eshkabilov, Sh.D. Nodirov, F.H. Haydarov, “Positive fixed points of quadratic operators and Gibbs measures”, Positivity, 20:4 (2016), 929-943 · Zbl 1354.82005 · doi:10.1007/s11117-015-0394-9
[21] Ya.G. Sinai, Theory of phase transitions: Rigorous Results, Pergamon, Oxford, 1982 · Zbl 0537.60097
[22] V.V. Prasolov, Polynomials, Algorithms and Computation in Mathematics, 11, 2000
[23] R.W.D. Nickalls, “Vieta, Descartes and the cubic equation”, Mathematical Gazette, 90 (2006), 203-208 · doi:10.1017/S0025557200179598
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.