×

On Ising model with four competing interactions on Cayley tree. (English) Zbl 1185.60112

The paper studies a spin model on a Cayley tree of order two. Its Hamiltonian \(H\) includes four competing interactions (external field, nearest neighbor, second neighbors and triples of neighbors). For a sequence \(V_1 \subset V_2 \subset \dots\) with \(\bigcup_{n=1}^{\infty}V_n=V\) and Gibbs measures \(\mu^{(n)}\) on \(\{-1,+1\}^{V_n}\) (\(n\in\mathbb{N}\)) satisfying the consistency conditions one obtains a limit Gibbs measure \(\mu\) on \(\{-1,+1\}^V\) as \(n\to \infty\). The criterion (see equation (5) of the paper) to meet these conditions is given in terms of the model parameters appearing in \(H\) and in the description of measures \(\mu^{(n)}\). In a particular case it is proved that there are three translation-invariant Gibbs measures \(\mu_1,\mu_2,\mu_3\) as equation (5) admits different solutions (i.e. there is a phase transition). The complete description of the periodic Gibbs measures for the model is provided as well. Moreover, the continuum of distinct non-periodic extreme Gibbs measures is constructed.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B05 Classical equilibrium statistical mechanics (general)
Full Text: DOI

References:

[1] Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, London (1982) · Zbl 0538.60093
[2] Bleher, P., Ruiz, J., Schonmann, R.H., Schlosman, S., Zagrebnov, V.: Rigidity of the critical phases on a Cayley tree. Moscow Math. J. 1, 345–363 (2001)
[3] Bleher, P., Ruiz, J., Zagrebnov, V.: On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice. J. Statist. Phys. 79, 473–482 (1995) · Zbl 1081.82515 · doi:10.1007/BF02179399
[4] Bleher, P., Ganikhodjaev, N.: On the phases of the Ising model on the Bethe lattice. Theory Probab. Appl. 35, 216–227 (1990) · Zbl 0715.60122 · doi:10.1137/1135031
[5] Ganikhodjaev, N.N.: Group representations and automophisms of the Cayley tree. Dokl. Akad. Nauk. Rep. Uzbekistan 4, 3–5 (1994) (Russian)
[6] Ganikhodjaev (Ganikhodzhaev), N.N., Rozikov, U.A.: A description of periodic extremal Gibbs measures on some lattice models on the Cayley tree. Theor. Math. Phys. 111, 480–486 (1997) · Zbl 0964.82504 · doi:10.1007/BF02634202
[7] Ganikhodjaev, N.N.: Exact solution of an Ising model on the Cayley tree with competing ternary and binary interactions. Theor. Math. Phys. 130(3), 419–424 (2002) · Zbl 1031.82012 · doi:10.1023/A:1014771023960
[8] Ganikhodjaev, N.N., Pah, C.H., Wahiddin, M.R.B.: Exact solution of an Ising model with competing interactions on a Cayley tree. J. Phys. A 36, 4283–4289 (2003) · Zbl 1168.82316 · doi:10.1088/0305-4470/36/15/305
[9] Ganikhodjaev, N.N., Pah, C.H., Wahiddin, M.R.B.: An Ising model with three competing interactions on a Cayley tree. J. Math. Phys. 45, 3645–3658 (2004) · Zbl 1071.82015 · doi:10.1063/1.1781747
[10] Georgii, H.-O.: Gibbs Measures and Phase Transitions. Walte de Gruyter, Berlin (1998)
[11] Katsura, S., Takizawa, M.: Bethe lattice and the Bethe approximation. Prog. Theor. Phys. 51, 82–98 (1974) · doi:10.1143/PTP.51.82
[12] Kindermann, R., Snell, J.L.: Markov random fields and their applications. Contemp. Math. 1 (1980) · Zbl 1229.60003
[13] Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1961) · Zbl 0121.00103
[14] Lyons, R.: Phase transitions on nonamenable group. J. Math. Phys. 41, 1099–1126 (2000) · Zbl 1034.82014 · doi:10.1063/1.533179
[15] Monroe, J.L.: Phase diagrams of Ising models on Husime trees II. J. Stat. Phys. 67, 1185–2000 (1992) · Zbl 0925.82073 · doi:10.1007/BF01049014
[16] Monroe, J.L.: A new criterion for the location of phase transitions for spin system on a recursive lattice. Phys. Lett. A 188, 80–84 (1994) · Zbl 0994.82520 · doi:10.1016/0375-9601(94)90121-X
[17] Mukhamedov, F.M., Rozikov, U.A.: On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras. J. Statist. Phys. 114, 825–848 (2004) · Zbl 1061.82007 · doi:10.1023/B:JOSS.0000012509.10642.83
[18] Preston, K.: Gibbs States on Countable Sets. Cambridge, London (1974) · Zbl 0297.60054
[19] Rozikov, U.A.: Partition structures of the group representation of the Cayley tree into cosets by finite-index normal subgroups and their applications to description of periodic Gibbs distributions. Theor. Math. Phys. 112, 929–933 (1997) · Zbl 0978.82506 · doi:10.1007/BF02634109
[20] Rozikov, U.A.: Description uncountable number of Gibbs measures for inhomogeneous Ising model. Theor. Math. Phys. 118, 95–104 (1999) · Zbl 0957.82007 · doi:10.1007/BF02557197
[21] Shiryaev, A.N.: Probability. Nauka, Moscow (1980) · Zbl 0508.60001
[22] Sinai, Y.G.: Theory of Phase Transitions: Rigorous Results. Pergamon, Oxford (1982)
[23] Spitzer, F.: Markov random field on infinite tree. Ann. Probab. 3, 387–398 (1975) · Zbl 0313.60072 · doi:10.1214/aop/1176996347
[24] Suhov, Y.M., Rozikov, U.A.: A hard-core model on a Cayley tree: an example of a loss network. Queueing Systems 46, 197–212 (2004) · Zbl 1139.90338 · doi:10.1023/B:QUES.0000021149.43343.05
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.