×

Asynchronous event-triggered adaptive robust switching filtering for nonlinear industrial cyber physical systems under data injection attacks. (English) Zbl 1533.93495

Summary: By fully taking the effects of data injection attacks and nonlinear disturbances into consideration, based on dynamic asynchronous event-triggered approach, an adaptive robust \(H_{\infty}\) switching filtering (ARSF) method is proposed for the stability of industrial cyber physical systems. An adaptive feedback controller utilizing anticipated states and error-dependent parameters can proficiently counteract the deleterious impacts of data injection attacks originating from the measurement channel. Furthermore, a \(H_{\infty}\) filter, which includes the value of the measurement signal, is designed to monitor the system’s state changes in real-time and ensure the stable operation of the system under attacks. Based on the design of an adaptive feedback controller and a \(H_{\infty}\) filter eliminating the effects of data injection attacks originating from the measurement channel, a switching scheme is further proposed for compensating the effect of data injection attacks in the control channel. Finally, simulation tests are conducted by using MATLAB to control the robustness of a practical quadrotor UAV system’s angles by adopting ARSF, whose results verify that the correctness and effectiveness of the proposed ARSF.
© 2023 John Wiley & Sons Ltd.

MSC:

93C65 Discrete event control/observation systems
93C40 Adaptive control/observation systems
93B36 \(H^\infty\)-control
93E11 Filtering in stochastic control theory
93C10 Nonlinear systems in control theory
93B70 Networked control
93C83 Control/observation systems involving computers (process control, etc.)

Software:

Matlab
Full Text: DOI

References:

[1] HuananZ, SupingX, JiannanW. Security and application of wireless sensor network. Proc Comput Sci. 2021;183:486‐492. doi:10.1016/j.procs.2021.02.088
[2] AlladiT, ChamolaV, ZeadallyS. Industrial Control Systems: Cyberattack trends and countermeasures. Comput Commun. 2020;155:1‐8. doi:10.1016/j.comcom.2020.03.007
[3] GengeB, HallerP, DukaAV. Engineering security‐aware control applications for data authentication in smart industrial cyber-physical systems. Fut Gener Comput Syst. 2019;91:206‐222. doi:10.1016/j.future.2018.09.001
[4] HeH, QiW, LiuZ, WangM. Adaptive attack‐resilient control for Markov jump system with additive attacks. Nonlinear Dyn. 2021;103(2):1585‐1598. doi:10.1007/s11071‐020‐06085‐5 · Zbl 1517.93050
[5] DingD, HanQ, WangZ, GeX. A survey on model‐based distributed control and filtering for industrial cyber‐physical systems. IEEE Trans Indus Inform. 2019;15(5):2483‐2499. doi:10.1109/tii.2019.2905295
[6] DingD, HanQ, XiangY, GeX, ZhangX. A survey on security control and attack detection for industrial cyber‐physical systems. Neurocomputing.2018;275:1674‐1683. doi:10.1016/j.neucom.2017.10.009
[7] SuQ, WangH, SunC, LiB, LiJ. Cyber‐attacks against cyber‐physical power systems security: state estimation, attacks reconstruction and defense strategy. Appl Math Comput. 2022;413:126639. doi:10.1016/j.amc.2021.126639 · Zbl 1510.93055
[8] LiuB, ChenJ, HuY. Mode division‐based anomaly detection against integrity and availability attacks in industrial cyber‐physical systems. Comput Indus. 2022;137:103609. doi:10.1016/j.compind.2022.103609
[9] LvY, YangG. An adaptive cubature Kalman filter for nonlinear systems against randomly occurring injection attacks. Appl Math Comput. 2022;418:126834. doi:10.1016/j.amc.2021.126834 · Zbl 1510.93321
[10] NingZ, WangT, ZhangK. Dynamic event‐triggered security control and fault detection for nonlinear systems with quantization and deception attack. Inform Sci.2022;594:43‐59. doi:10.1016/j.ins.2022.02.019 · Zbl 1533.93492
[11] YinY, YuW, BuX, YuQ. Security data‐driven iterative learning control for unknown nonlinear systems with hybrid attacks and fading measurements. ISA Trans. 2022;129:1‐12. doi:10.1016/j.isatra.2022.01.018
[12] TahounA, ArafaM. Secure control design for nonlinear cyber-physical systems under DoS, replay, and deception cyber‐attacks with multiple transmission channels. ISA Trans. 2022;128:294‐308. doi:10.1016/j.isatra.2021.11.033
[13] GeH, YueD, XieX, DengS, DouC. A unified modeling of muti‐sources cyber‐attacks with uncertainties for CPS security control. J Frankl Instit. 2021;358(1):89‐113. doi:10.1016/j.jfranklin.2019.01.006 · Zbl 1459.94160
[14] BabadiN, DoustmohammadiA. A moving target defence approach for detecting deception attacks on cyber‐physical systems. Comput Electr Eng. 2022;100:107931. doi:10.1016/j.compeleceng.2022.107931
[15] MatthewS. US authorities recover most of Colonial Pipeline ransom. Netw Secur. 2021;2021(6):1‐2. doi:10.1016/s1353‐4858(21)00057‐x
[16] KalechM. Cyber‐attack detection in SCADA systems using temporal pattern recognition techniques. Comput Secur. 2019;84:225‐238. doi:10.1016/j.cose.2019.03.007
[17] LiY, LiD, LiuB, WangQ, YiY. Output feedback control for linear systems under measurement disturbances. IEEE Trans Circ Syst II: Exp Briefs. 2023;70(6):2067‐2071. doi:10.1109/tcsii.2022.3220941
[18] OliveiraPM, PalmaJM, LacerdaMJ.
[( {H}_2 \]\) state‐feedback control for discrete‐time cyber‐physical uncertain systems under DoS attacks. Appl Math Comput. 2022;425:127091. doi:10.1016/j.amc.2022.127091 · Zbl 1510.93251
[19] SuL, YeD. Observer‐based output feedback
[( {H}_{\infty } \]\) control for cyber-physical systems under randomly occurring packet dropout and periodic DoS attacks. ISA Trans. 2019;95:58‐67. doi:10.1016/j.isatra.2019.05.008
[20] QiW, HouY, ZongG, AhnCK. Finite‐time event‐triggered control for semi‐markovian switching cyber‐physical systems with FDI attacks and applications. IEEE Trans Circ Syst I: Regul Pap. 2021;68(6):2665‐2674. doi:10.1109/tcsi.2021.3071341
[21] QiW, ZhangC, ZongG, SuSF, ChadliM. Finite‐Time Event‐Triggered Stabilization for Discrete‐Time Fuzzy Markov Jump Singularly Perturbed Systems. IEEE Transactions on Cybernetics. 2022;1‐10. doi:10.1109/tcyb.2022.3207430
[22] QiW, ZongG, ZhengWX. Adaptive event‐triggered smc for stochastic switching systems with semi‐markov process and application to boost converter circuit model. IEEE Trans Circ Syst I: Regul Pap. 2021;68(2):786‐796. doi:10.1109/tcsi.2020.3036847
[23] ZhaoD, WangZ, WeiG, HanQL. A dynamic event‐triggered approach to observer‐based PID security control subject to deception attacks. Automatica. 2020;120:109128. doi:10.1016/j.automatica.2020.109128 · Zbl 1448.93219
[24] FengZ, ShaoH, ShaoL. Further results on event‐triggered
[( {H}_{\infty } \]\) networked control for neural networks with stochastic cyber‐attacks. Appl Math Comput. 2020;386:125431. doi:10.1016/j.amc.2020.125431 · Zbl 1497.93228
[25] SunY, YangG. Event‐triggered resilient control for cyber‐physical systems under asynchronous DoS attacks. Inform Sci.2018;465:340‐352. doi:10.1016/j.ins.2018.07.030 · Zbl 1448.93212
[26] QinY, SunZ. Memory dynamic output feedback controller based on asynchronous event‐triggered robust H‐infinity control for nonlinear ICPSs under data injection attacks. Int J Robust Nonlinear Contr. 2021;32(3):1904‐1921. doi:10.1002/rnc.5919 · Zbl 1527.93138
[27] SongL, WuJ, LongC, LiS. Asynchronous event‐triggered output feedback control for CPS under data injection attacks. 2018 Chinese Automation Congress (CAC). IEEE; 2018.
[28] LuA, YangG. Stabilization of switched systems with all modes unstable via periodical switching laws. Automatica. 2020;122:109150. doi:10.1016/j.automatica.2020.109150 · Zbl 1451.93279
[29] GahinetP, ApkarianP. A linear matrix inequality approach toH
[( \infty \]\) control. Int J Robust Nonlinear Contr. 1994;4(4):421‐448. doi:10.1002/rnc.4590040403 · Zbl 0808.93024
[30] BoydS, GhaouiLE, FeronE, BalakrishnanV. Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics. 1994. · Zbl 0816.93004
[31] YuL. Robust control‐Linear Matrix Inequalities. Tsinghua University Press; 2002.
[32] ZhengX, WuH. Robust filtering algorithm against hybrid‐attacks and randomly occurring nonlinearities: Application to a quadrotor UAV. Digital Signal Process. 2021;117:103159. doi:10.1016/j.dsp.2021.103159
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.