×

Average sensitivity of nested canalizing multivalued functions. (English) Zbl 1533.92083

Pang, Jun (ed.) et al., Computational methods in systems biology. 21st international conference, CMSB 2023, Luxembourg City, Luxembourg, September 13–15, 2023. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 14137, 144-156 (2023).
Summary: The canalizing properties of biological functions have been mainly studied in the context of Boolean modelling of gene regulatory networks. An important mathematical consequence of canalization is a low average sensitivity, which ensures in particular the expected robustness to noise. In certain situations, the Boolean description is to crude, and it may be necessary to consider functions involving more than two levels of expression. We investigate here the properties of nested canalization for these multivalued functions. We prove that the average sensitivity of nested canalizing multivalued functions is bounded above by a constant. In doing so, we introduce a generalization of nested canalizing multivalued functions, which we call weakly nested canalizing, for which this upper bound holds.
For the entire collection see [Zbl 1531.92007].

MSC:

92C42 Systems biology, networks
06E30 Boolean functions

References:

[1] Danchin, A., Biological innovation in the functional landscape of a model regulator, or the lactose operon repressor, C.R. Biol., 344, 2, 111-126 (2021)
[2] Debat, V.; Le Rouzic, A., Canalization, a central concept in biology, Semin. Cell Dev. Biol., 88, 1-3 (2019) · doi:10.1016/j.semcdb.2018.05.012
[3] Friedgut, E., Boolean functions with low average sensitivity depend on few coordinates, Combinatorica, 18, 27-35 (1998) · Zbl 0909.06008 · doi:10.1007/PL00009809
[4] Hinkelmann, F.; Jarrah, S., Inferring biologically relevant models: nested canalyzing functions, ISRN Biomathematics, 3, 2012 (2012) · Zbl 1268.92049
[5] Just, W.; Shmulevich, I.; Konvalina, J., The number and probability of canalyzing functions, Physica D, 197, 3-4, 211-221 (2004) · Zbl 1076.94045 · doi:10.1016/j.physd.2004.07.002
[6] Kadelka, C.; Li, Y.; Kuipers, J.; Adeyeye, JO; Laubenbacher, R., Multistate nested canalizing functions and their networks, Theoret. Comput. Sci., 675, 1-14 (2017) · Zbl 1370.92049 · doi:10.1016/j.tcs.2017.01.031
[7] Kauffman, S.A.: The origins of order: Self organization and selection in evolution. Oxford University Press (1993)
[8] Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random Boolean network models and the yeast transcriptional network. Proc. Natl. Acad. Sci. 100(25) (2003)
[9] Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Genetic networks with canalyzing Boolean rules are always stable. Proc. Natl. Acad. Sci. 101(49) (2004)
[10] Klotz, J.G., Heckel, R., Schober, S.: Bounds on the average sensitivity of nested canalizing functions. Plos One 8(5) (2013)
[11] Li, Y.; Adeyeye, JO; Murrugarra, D.; Aguilar, B.; Laubenbacher, R., Boolean nested canalizing functions: a comprehensive analysis, Theoret. Comput. Sci., 481, 24-36 (2013) · Zbl 1291.92068 · doi:10.1016/j.tcs.2013.02.020
[12] Murrugarra, D.; Laubenbacher, R., Regulatory patterns in molecular interaction networks, J. Theor. Biol., 288, 66-72 (2011) · Zbl 1397.92257 · doi:10.1016/j.jtbi.2011.08.015
[13] Murrugarra, D.; Laubenbacher, R., The number of multistate nested canalyzing functions, Physica D, 241, 10, 929-938 (2012) · Zbl 1300.92036 · doi:10.1016/j.physd.2012.02.011
[14] O’Donnell, R.: Analysis of Boolean functions. Cambridge University Press (2014) · Zbl 1336.94096
[15] Podlipniak, P., The role of canalization and plasticity in the evolution of musical creativity, Front. Neurosci., 15 (2021) · doi:10.3389/fnins.2021.607887
[16] Ptachne, M., A genetic switch (1992), Phage lambda and higher organisms: Blackwell Science, Phage lambda and higher organisms
[17] Remy, É.; Ruet, P., From minimal signed circuits to the dynamics of Boolean regulatory networks, Bioinformatics, 24, i220-i226 (2008) · doi:10.1093/bioinformatics/btn287
[18] Remy, É.; Ruet, P.; Thieffry, D., Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework, Adv. Appl. Math., 41, 3, 335-350 (2008) · Zbl 1169.05333 · doi:10.1016/j.aam.2007.11.003
[19] Ruet, P., Local cycles and dynamical properties of Boolean networks, Math. Struct. Comput. Sci., 26, 4, 702-718 (2016) · Zbl 1373.37035 · doi:10.1017/S096012951400036X
[20] Schober, S.: About Boolean networks with noisy inputs. In: Proceedings of Fifth International Workshop on Computational Systems Biology, pp. 173-176 (2008)
[21] Subbaroyan, A.; Martin, OC; Samal, A., Minimum complexity drives regulatory logic in Boolean models of living systems, PNAS Nexus, 1, 1-12 (2022) · doi:10.1093/pnasnexus/pgac017
[22] Surkova, S., et al.: Characterization of the Drosophila segment determination morphome. Dev Biol. 313(2), 844-862 (2008)
[23] Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57, 277-295 (1995) · Zbl 0821.92010
[24] Thomas, R., Boolean formalization of genetic control circuits, J. Theor. Biol., 42, 563-585 (1973) · doi:10.1016/0022-5193(73)90247-6
[25] Thomas, R., Regulatory networks seen as asynchronous automata: a logical description, J. Theor. Biol., 153, 1-23 (1991) · doi:10.1016/S0022-5193(05)80350-9
[26] Waddington, CH, Canalization of development and the inheritance of acquired characters, Nature, 150, 563-565 (1942) · doi:10.1038/150563a0
[27] Zhou, JX; Samal, A.; d’Hérouël, AF; Price, ND; Huang, S., Relative stability of network states in Boolean network models of gene regulation in development, Biosystems, 142-143, 15-24 (2016) · doi:10.1016/j.biosystems.2016.03.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.