×

Bypassing the quadrature exactness assumption of hyperinterpolation on the sphere. (English) Zbl 1533.65038

It has been known for many years that many real-world applications can be modeled as spherical problems. A critical task of spherical modeling is to find an effective data fitting strategy to approximate the underlying mapping between input and output data. Hyperinterpolation, introduced by Ian Sloan is an example of a method for fitting spherical data. More precisely, Hyperinterpolation of degree \(n\) is a discrete approximation of the \(L_2\)-orthogonal projection of the same degree with its Fourier coefficients evaluated by a positive-weight quadrature rule that exactly integrates all spherical polynomials of degree at most \(2n\).
The paper under review, studies the approximation of continuous functions on the unit sphere by spherical polynomials of degree \(n\) via hyperinterpolation where the hyperinterpolation is constructed by a positive-weight quadrature rule (not necessarily with quadrature exactness). This scheme is referred to as unfettered hyperinterpolation. The paper provides an approximation error estimate consisting of two terms, the first representing the error estimate of the original hyperinterpolation of full quadrature exactness and the second, a compensation term for the loss of exactness degrees. A method and example to controlling the new term is provided.
The paper is well written with a good set of references.

MSC:

65D32 Numerical quadrature and cubature formulas
41A10 Approximation by polynomials
41A55 Approximate quadratures
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
33C55 Spherical harmonics

Software:

HyperCube; QSHEP3D

References:

[1] Adams, R. A., Sobolev Spaces. Pure and Applied Mathematics (1975), Academic Press: Academic Press New York · Zbl 0314.46030
[2] An, C.; Chen, X.; Sloan, I. H.; Womersley, R. S., Well conditioned spherical designs for integration and interpolation on the two-sphere. SIAM J. Numer. Anal., 2135-2157 (2010) · Zbl 1232.65043
[3] An, C.; Wu, H. N., Lasso hyperinterpolation over general regions. SIAM J. Sci. Comput., A3967-A3991 (2021) · Zbl 1483.65029
[4] An, C.; Wu, H. N., Tikhonov regularization for polynomial approximation problems in Gauss quadrature points. Inverse Probl. (2021), Paper No. 015008 · Zbl 1461.65010
[5] An, C.; Wu, H. N., On the quadrature exactness in hyperinterpolation. BIT, 1899-1919 (2022) · Zbl 1503.65052
[6] Atkinson, K.; Han, W., Theoretical Numerical Analysis. A Functional Analysis Framework. Texts in Applied Mathematics (2009), Springer: Springer Dordrecht · Zbl 1181.47078
[7] Baldeaux, J.; Dick, J., QMC rules of arbitrary high order: reproducing kernel Hilbert space approach. Constr. Approx., 495-527 (2009) · Zbl 1186.65005
[8] Bannai, E.; Damerell, R. M., Tight spherical designs. I. J. Math. Soc. Jpn., 199-207 (1979) · Zbl 0403.05022
[9] Bannai, E.; Damerell, R. M., Tight spherical designs. II. J. Lond. Math. Soc. (2), 13-30 (1980) · Zbl 0436.05018
[10] Bondarenko, A.; Radchenko, D.; Viazovska, M., Optimal asymptotic bounds for spherical designs. Ann. Math. (2), 443-452 (2013) · Zbl 1270.05026
[11] Brauchart, J. S., Explicit Families of Functions on the Sphere with Exactly Known Sobolev Space Smoothness. Contemporary Computational Mathematics—a Celebration of the 80th Birthday of Ian Sloan, 153-177 (2018), Springer: Springer Cham · Zbl 1405.65076
[12] Brauchart, J. S.; Dick, J., Quasi-Monte Carlo rules for numerical integration over the unit sphere \(\mathbb{S}^2\). Numer. Math., 473-502 (2012) · Zbl 1258.65003
[13] Brauchart, J. S.; Dick, J.; Saff, E. B.; Sloan, I. H.; Wang, Y. G.; Womersley, R. S., Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces. J. Math. Anal. Appl., 782-811 (2015) · Zbl 1325.65037
[14] Brauchart, J. S.; Grabner, P. J.; Sloan, I. H.; Womersley, R. S. (2022), Needlets liberated. ArXiv preprint
[15] Brauchart, J. S.; Hesse, K., Numerical integration over spheres of arbitrary dimension. Constr. Approx., 41-71 (2007) · Zbl 1106.41028
[16] Brauchart, J. S.; Saff, E. B.; Sloan, I. H.; Womersley, R. S., QMC designs: optimal order quasi Monte Carlo integration schemes on the sphere. Math. Comput., 2821-2851 (2014) · Zbl 1315.65003
[17] Caliari, M.; De Marchi, S.; Vianello, M., Hyperinterpolation on the square. J. Comput. Appl. Math., 78-83 (2007) · Zbl 1151.65014
[18] Caliari, M.; De Marchi, S.; Vianello, M., Hyperinterpolation in the cube. Comput. Math. Appl., 2490-2497 (2008) · Zbl 1142.65312
[19] Chernih, A.; Sloan, I. H.; Womersley, R. S., Wendland functions with increasing smoothness converge to a Gaussian. Adv. Comput. Math., 185-200 (2014) · Zbl 1298.41002
[20] Delsarte, P.; Goethals, J. M.; Seidel, J. J., Spherical codes and designs. Geom. Dedic., 363-388 (1977) · Zbl 0376.05015
[21] DeVore, R. A.; Lorentz, G. G., Constructive Approximation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0797.41016
[22] Dick, J., Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal., 1519-1553 (2008) · Zbl 1189.42012
[23] Dick, J.; Kuo, F. Y.; Sloan, I. H., High-dimensional integration: the quasi-Monte Carlo way. Acta Numer., 133-288 (2013) · Zbl 1296.65004
[24] Filbir, F.; Mhaskar, H. N., Marcinkiewicz-Zygmund measures on manifolds. J. Complex., 568-596 (2011) · Zbl 1235.58007
[25] Goda, T., A note on concatenation of quasi-Monte Carlo and plain Monte Carlo rules in high dimensions. J. Complex., 12 (2022), Paper No. 101647 · Zbl 1493.65010
[26] Goda, T.; Suzuki, K.; Yoshiki, T., Optimal order quasi-Monte Carlo integration in weighted Sobolev spaces of arbitrary smoothness. IMA J. Numer. Anal., 505-518 (2017) · Zbl 1433.65031
[27] Hansen, O.; Atkinson, K.; Chien, D., On the norm of the hyperinterpolation operator on the unit disc and its use for the solution of the nonlinear poisson equation. IMA J. Numer. Anal., 257-283 (2009) · Zbl 1163.65082
[28] Hesse, K.; Sloan, I. H., Worst-case errors in a Sobolev space setting for cubature over the sphere \(S^2\). Bull. Aust. Math. Soc., 81-105 (2005) · Zbl 1068.41049
[29] Hesse, K.; Sloan, I. H., Cubature over the sphere \(S^2\) in Sobolev spaces of arbitrary order. J. Approx. Theory, 118-133 (2006) · Zbl 1102.41027
[30] Hesse, K.; Sloan, I. H., Hyperinterpolation on the sphere, 213-248 · Zbl 1194.41044
[31] Hesse, K.; Sloan, I. H.; Womersley, R. S., Numerical integration on the sphere · Zbl 1197.86018
[32] Hesse, K.; Sloan, I. H.; Womersley, R. S., Radial basis function approximation of noisy scattered data on the sphere. Numer. Math., 579-605 (2017) · Zbl 1380.41005
[33] Hickernell, F. J.; Sloan, I. H.; Wasilkowski, G. W., On tractability of weighted integration over bounded and unbounded regions in \(\mathbb{R}^s\). Math. Comput., 1885-1901 (2004) · Zbl 1068.65005
[34] Hinrichs, A.; Markhasin, L.; Oettershagen, J.; Ullrich, T., Optimal quasi-Monte Carlo rules on order 2 digital nets for the numerical integration of multivariate periodic functions. Numer. Math., 163-196 (2016) · Zbl 1358.65004
[35] Kazashi, Y., A fully discretised polynomial approximation on spherical shells. GEM Int. J. Geomath., 299-323 (2016) · Zbl 1351.41003
[36] Kazashi, Y., A fully discretised filtered polynomial approximation on spherical shells. J. Comput. Appl. Math., 428-441 (2018) · Zbl 1380.41003
[37] Kuo, F. Y.; Sloan, I. H., Quasi-Monte Carlo methods can be efficient for integration over products of spheres. J. Complex., 196-210 (2005) · Zbl 1079.65008
[38] Le Gia, Q. T.; Mhaskar, H. N., Localized linear polynomial operators and quadrature formulas on the sphere. SIAM J. Numer. Anal., 440-466 (2009) · Zbl 1190.65039
[39] Le Gia, Q. T.; Narcowich, F. J.; Ward, J. D.; Wendland, H., Continuous and discrete least-squares approximation by radial basis functions on spheres. J. Approx. Theory, 124-133 (2006) · Zbl 1110.41007
[40] Le Gia, Q. T.; Sloan, I. H., The uniform norm of hyperinterpolation on the unit sphere in an arbitrary number of dimensions. Constr. Approx., 249-265 (2001) · Zbl 0989.41007
[41] Le Gia, Q. T.; Sloan, I. H.; Wendland, H., Multiscale analysis in Sobolev spaces on the sphere. SIAM J. Numer. Anal., 2065-2090 (2010) · Zbl 1233.65011
[42] Leopardi, P., Diameter bounds for equal area partitions of the unit sphere. Electron. Trans. Numer. Anal., 1-16 (2009) · Zbl 1276.51008
[43] Lin, S. B.; Wang, Y. G.; Zhou, D. X., Distributed filtered hyperinterpolation for noisy data on the sphere. SIAM J. Numer. Anal., 634-659 (2021) · Zbl 1484.65025
[44] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications. Vol. I. Die Grundlehren der Mathematischen Wissenschaften (1972), Springer-Verlag: Springer-Verlag New York-Heidelberg, Translated from the French by P. Kenneth · Zbl 0223.35039
[45] Marcinkiewicz, J.; Zygmund, A., Sur les fonctions indépendantes. Fundam. Math., 60-90 (1937) · JFM 63.0946.02
[46] Maz’ya, V. G.; Shaposhnikova, T. O., Theory of Multipliers in Spaces of Differentiable Functions. Monographs and Studies in Mathematics (1985), Pitman: Pitman Boston · Zbl 0645.46031
[47] Mhaskar, H. N.; Narcowich, F. J.; Ward, J. D., Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comput., 1113-1130 (2001) · Zbl 0980.76070
[48] Müller, C., Spherical Harmonics. Lecture Notes in Mathematics (1966), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0138.05101
[49] Narcowich, F.; Petrushev, P.; Ward, J., Decomposition of Besov and Triebel-Lizorkin spaces on the sphere. J. Funct. Anal., 530-564 (2006) · Zbl 1114.46026
[50] Narcowich, F. J.; Petrushev, P.; Ward, J. D., Localized tight frames on spheres. SIAM J. Math. Anal., 574-594 (2006) · Zbl 1143.42034
[51] Narcowich, F. J.; Ward, J. D., Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal., 1393-1410 (2002) · Zbl 1055.41007
[52] Rakhmanov, E. A.; Saff, E. B.; Zhou, Y. M., Minimal discrete energy on the sphere. Math. Res. Lett., 647-662 (1994) · Zbl 0839.31011
[53] Reimer, M., Hyperinterpolation on the sphere at the minimal projection order. J. Approx. Theory, 272-286 (2000) · Zbl 0959.41001
[54] Reimer, M., Generalized hyperinterpolation on the sphere and the Newma-Shapiro operators. Constr. Approx., 183-204 (2002)
[55] Reimer, M., Multivariate Polynomial Approximation. International Series of Numerical Mathematics (2003), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1038.41002
[56] Renka, R. J., Multivariate interpolation of large sets of scattered data. ACM Trans. Math. Softw., 139-148 (1988) · Zbl 0642.65006
[57] Seymour, P. D.; Zaslavsky, T., Averaging sets: a generalization of mean values and spherical designs. Adv. Math., 213-240 (1984) · Zbl 0596.05012
[58] Sloan, I. H., Polynomial interpolation and hyperinterpolation over general regions. J. Approx. Theory, 238-254 (1995) · Zbl 0839.41006
[59] Sloan, I. H.; Womersley, R. S., The uniform error of hyperinterpolation on the sphere, 289-306 · Zbl 0951.41015
[60] Sloan, I. H.; Womersley, R. S., Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math., 107-125 (2004) · Zbl 1055.65038
[61] Sloan, I. H.; Womersley, R. S., Filtered hyperinterpolation: a constructive polynomial approximation on the sphere. GEM Int. J. Geomath., 95-117 (2012) · Zbl 1259.65017
[62] Sloan, I. H.; Woźniakowski, H., When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals?. J. Complex., 1-33 (1998) · Zbl 1032.65011
[63] Sommariva, A.; Vianello, M., Numerical hyperinterpolation over spherical triangles. Math. Comput. Simul., 15-22 (2021) · Zbl 1540.65040
[64] Trefethen, L. N., Exactness of quadrature formulas. SIAM Rev., 132-150 (2022) · Zbl 1515.65067
[65] Wang, H.; Wang, K.; Wang, X., On the norm of the hyperinterpolation operator on the \(d\)-dimensional cube. Comput. Math. Appl., 632-638 (2014) · Zbl 1362.65023
[66] Wang, Y. G.; Le Gia, Q. T.; Sloan, I. H.; Womersley, R. S., Fully discrete needlet approximation on the sphere. Appl. Comput. Harmon. Anal., 292-316 (2017) · Zbl 1372.42040
[67] Wendland, H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math., 389-396 (1995) · Zbl 0838.41014
[68] Womersley, R. S.; Sloan, I. H., How good can polynomial interpolation on the sphere be?. Adv. Comput. Math., 195-226 (2001) · Zbl 0980.41003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.