×

Wendland functions with increasing smoothness converge to a Gaussian. (English) Zbl 1298.41002

Summary: The Wendland functions are a class of compactly supported radial basis functions with a user-specified smoothness parameter. We prove that with an appropriate rescaling of the variables, both the original and the “missing” Wendland functions converge uniformly to a Gaussian as the smoothness parameter approaches infinity. We also explore the convergence numerically with Wendland functions of different smoothness.

MSC:

41A05 Interpolation in approximation theory
41A15 Spline approximation
41A30 Approximation by other special function classes
41A63 Multidimensional problems
65D07 Numerical computation using splines

Software:

Matlab

References:

[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, vol. 65 of National Bureau of Standards Applied Mathematics Series. Dover Publications, New York (1972) · Zbl 0543.33001
[2] Andrews, G.E., Askey, R., Roy, R.: Special Functions, vol. 71 of Encylopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2000) · Zbl 1075.33500
[3] Buhmann, M.D.: Radial Basis Functions, vol. 12 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003) · Zbl 1038.41001 · doi:10.1017/CBO9780511543241
[4] DLMF: Digital Library of Mathematical Functions, National Institute of Standards and Technology (2011) · Zbl 0838.41014
[5] Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific Publishing Co., Singapore (2007) · Zbl 1123.65001
[6] Fasshauer, G.E., Zhang, J.G.: On choosing ‘optimal’ shape parameters for RBF approximation. Numer. Algorithms 45, 345-368 (2007) · Zbl 1127.65009 · doi:10.1007/s11075-007-9072-8
[7] Fornefett, M., Rohr, K., Stiehl, H.S.: Radial basis functions with compact support for elastic registration of medical images. Image Vis. Comput. 19, 87-96 (2001) · doi:10.1016/S0262-8856(00)00057-3
[8] Franke, R.: A Critical Comparison of some Methods for Interpolation of Scattered Data, Tech. Report NPS-53-79-003, Naval Postgraduate School, March (1979)
[9] Gneiting, T.: Radial positive definite functions generated by Euclid’s hat. J. Multivar. Anal. 69, 88-119 (1999) · Zbl 0937.60007 · doi:10.1006/jmva.1998.1800
[10] Hubbert, S.: Closed form representations for a class of compactly supported radial basis functions. Adv. Comput. Math. 36, 115-136 (2012) · Zbl 1251.41007 · doi:10.1007/s10444-011-9184-5
[11] Moreaux, G.: Compactly supported radial covariance functions. J. Geod. 82, 431-443 (2008) · doi:10.1007/s00190-007-0195-4
[12] Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comp. Math. 11, 193-210 (1999) · Zbl 0943.65017 · doi:10.1023/A:1018975909870
[13] Schaback, R.; Daehlen, M. (ed.); Lyche, T. (ed.); Schumaker, LL (ed.), Creating surfaces from scattered data using radial basis functions, 477-496 (1995), Nashville · Zbl 0835.65036
[14] Schaback, R.: The missing Wendland functions. Adv. Comput. Math. 34, 67-81 (2011) · Zbl 1229.41020 · doi:10.1007/s10444-009-9142-7
[15] Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, vol. 32 of Princeton Mathematical Series. Princeton University Press, Princeton (1971) · Zbl 0232.42007
[16] Wendel, J.G.: Note on the gamma function. Am. Math. Monthly 55, 563-564 (1948) · doi:10.2307/2304460
[17] Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389-396 (1995) · Zbl 0838.41014 · doi:10.1007/BF02123482
[18] Wendland, H.: Scattered Data Approximation, vol. 17 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005) · Zbl 1075.65021
[19] Wu, Z.: Compactly supported positive definite radial basis functions. Adv. Comput. Math. 4, 283-292 (1995) · Zbl 0837.41016 · doi:10.1007/BF03177517
[20] Zastavnyi, V.P.: On some properties of Buhmann functions. Ukr. Math. J. 58, 1045-1067 (2006) · Zbl 1116.42002 · doi:10.1007/s11253-006-0128-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.