×

Tau-function formulation for bright, dark soliton and breather solutions to the massive Thirring model. (English) Zbl 1533.37138

Summary: In the present paper, we are concerned with the link between the Kadomtsev-Petviashvili-Toda (KP-Toda) hierarchy and the massive Thirring (MT) model. First, we bilinearize the MT model under both the vanishing and nonvanishing boundary conditions. Starting from a set of bilinear equations of two-component KP-Toda hierarchy, we derive multibright solution to the MT model. Then, considering a set of bilinear equations of the single-component KP-Toda hierarchy, multidark soliton and multibreather solutions to the MT model are constructed by imposing constraints on the parameters in two types of tau function, respectively. The dynamics and properties of one- and two-soliton for bright, dark soliton and breather solutions are analyzed in details.
{© 2022 Wiley Periodicals LLC.}

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35Q51 Soliton equations
35C08 Soliton solutions
Full Text: DOI

References:

[1] LeeTD.Some special examples in renormalizable field theory. Phys Rev. 1954;95:1329. · Zbl 0058.23204
[2] ThirringWE.A soluble relativistic field theory. Ann Phys. 1958;3:91‐112. · Zbl 0078.44303
[3] KuznetzovEA, MikhailovAV.On the complete integrability of the two‐dimensional classical Thirring model. Theor Math Phys. 1977;30:193‐200.
[4] MikhailovAV.Integrability of the two‐dimensional Thirring model. JETP Lett. 1976;23:320‐323.
[5] OrfanidisSJ.Soliton solutions of the massive Thirring model and the inverse scattering transform. Phys Rev D. 1976;14:472‐478.
[6] KawataK, MorishimaT, InoueH.Inverse scattering method for the two‐dimensional massive Thirring model. J Phys Soc Jpn. 1979;47:1327‐1334. · Zbl 1334.81105
[7] WadatiM.General solution and Lax pair for 1D classical massless Thirring model. J Phys Soc Jpn. 1983;52:1084‐1085.
[8] KaupDJ, LakobaT.The squared eigenfunctions of the massive Thirring model in laboratory coordinates. J Math Phys. 1996;37:308‐323. · Zbl 0861.35090
[9] VillarroelJ.The DBAR problem and the Thirring model. Stud Appl Math. 1991;84:207‐220. · Zbl 0734.35135
[10] PelinovskyD, SaalmannA. Inverse scattering for the massive Thirring model. In: MillerP (ed.)., PerryP (ed.), SautJC (ed.), SulemC (ed.), eds. Nonlinear Dispersive Partial Differential Equations and Inverse Scattering. Fields Institute Communications, Vol 83. Springer; 2019:497‐528. · Zbl 1442.35362
[11] KaupDJ, NewellAC.On the Coleman correspondence and the solution of the massive Thirring model. Lett Nuovo Cimento. 1977;20:325‐331.
[12] LeeJH. \(n\times n\) Zakharov-Shabat system of the form \((d\psi /dx)(z^2-1/z^2){J}\psi +(z{Q}+{P}+{R}/z)\psi \). In: okasAS (ed.), KaupDJ (ed.), NewellAC (ed.), ZakharovVE (ed.), eds. Nonlinear Processes in Physics. Springer; 1993:118‐121.
[13] LeeJH.Solvability of the derivative nonlinear Schrödinger equation and the massive Thirring model. Theor Math Phys. 1994;99:617‐621. · Zbl 0854.34080
[14] PrikarpatskiiAK, GolodPI.Periodic problem for the classical two‐dimensional Thirring model. Ukr Math J. 1979;31:362‐367. · Zbl 0428.35073
[15] PrikarpatskiiAK.Geometrical structure and Bäcklund transformations of nonlinear evolution equations possessing a Lax representation. Theor Math Phys. 1981;46:249‐256. · Zbl 0467.35003
[16] FrancaGS, GomesJF, ZimermanAH.The algebraic structure behind the derivative nonlinear Schrödinger equation. J Phys A Math Theor. 2013;46:305201. · Zbl 1283.35124
[17] DegasperisA.Darboux polynomial matrices: the classical massive Thirring model as a study case. J Phys A Math Theor. 2015;48:235204. · Zbl 1346.35173
[18] DateE.On a construction of multi‐soliton solutions of the Pohlmeyer‐Lund‐Regge system and the classical massive Thirring model. Proc Jpn Acad Ser A Math Sci. 1979;55:278‐281. · Zbl 0449.35079
[19] DavidD, HarnadJ, ShniderS.Multisoliton solutions to the Thirring model through the reduction method. Lett Math Phys. 1984;8:27‐37. · Zbl 0539.35071
[20] AlonsoLM.Soliton classical dynamics in the sine‐Gordon equation in terms of the massive Thirring model. Phys Rev D. 1984;30:2595‐2601.
[21] BarashenkovIV, GetmanovBS.Multisoliton solutions in the scheme for unified description of integrable relativistic massive fields, Non‐degenerate \(sl(2, C)\) case. Commun Math Phys. 1987;112:423‐446.
[22] BarashenkovIV, GetmanovBS, KovtunVE.The unified approach to integrable relativistic equations: soliton solutions over nonvanishing backgrounds. I. J Math Phys. 1993;34:3039‐3053. · Zbl 0777.35081
[23] BarashenkovIV, GetmanovBS.The unified approach to integrable relativistic equations: soliton solutions over nonvanishing backgrounds. II. J Math Phys. 1993;34:3054‐3072. · Zbl 0777.35082
[24] TalalovSV.Hamiltonian structure of “Thirring× Liouville” model. Singular solutions. Theor Math Phys. 1987;71:588‐597. · Zbl 0649.35078
[25] VaklevY.Soliton solutions and gauge equivalence for the problem of Zakharov���Shabat and its generalizations. J Math Phys. 1996;37:1393‐1413. · Zbl 0868.35113
[26] DateE.On quasi‐periodic solutions of the field equation of the classical massive Thirring model. Prog Theor Phys. 1978;59:265‐573.
[27] PrikarpatskiiAK, GolodPI.Periodic problem for the classical two‐dimensional Thirring model. Ukr Math J. 1979;31:362‐367. · Zbl 0428.35073
[28] BikbaevRF.Finite‐gap solutions of the massive Thirring model. Teor Mat Fiz. 1985;63:377‐387.
[29] WisseMA.Darboux coordinates and isospectral Hamiltonian flows for the massive Thirring model. Lett Math Phys. 1993;28:287‐294. · Zbl 0811.58050
[30] EnolskiiVZ, GesztesyF, HoldenH. The classical massive Thirring system revisited. In: GesztesyF (ed.), HoldenH (ed.), JostJ (ed.), PaychaS (ed.), RocknerM (ed.), ScarlattiS (ed.), eds. Stochastic Processes, Physics and Geometry: New Interplays. I. A Volume in Honor of Sergio Albeverio. Canadian Mathematical Society Conference; 2000:163‐200. · Zbl 0968.37024
[31] ElbeckJC, EnolskiiF, HoldenH.The hyperelliptic ξ‐function and the integrable massive Thirring model. Proc R Soc Lond. 2003;459:1581‐1610. · Zbl 1101.14314
[32] DegasperisA, WabnitzS, AcevesAB.Bragg grating rogue wave. Phys Lett A. 2015;379:1067‐1070. · Zbl 1341.78021
[33] GuoL, WangL, ChengY, HeJ.High‐order rogue wave solutions of the classical massive Thirring model equations. Commun Nonlinear Sci Numer Simul. 2017;52:11‐23. · Zbl 1510.35177
[34] YeY, BuL, PanC, ChenS, MihalacheD, BaronioF.Super rogue wave states in the classical massive Thirring model system. Rom Rep Phys. 2021;73:117:1‐117:16.
[35] deSterkeCM, SipeJE.Gap solitons. Prog Opt. 1994;33:203‐260.
[36] AlexeevaNV, BarashenkovIV, SaxenaA.Spinor solitons and their PT‐symmetric offspring. Ann Phys. 2019;403:198‐223. · Zbl 1411.81114
[37] NijhoffFW, CapelHW, QuispelGRW, van derLindenJ.The derivative nonlinear Schrödinger equation and the massive Thirring model. Phys Lett A. 1983;93:455‐458.
[38] NijhoffFW, CapelHW, QuispelGRW.Integrable lattice version of the massive Thirring model and its linearization. Phys Lett A. 1983;98:83‐86.
[39] JoshiN, PelinovskyDE.Integrable semi‐discretization of the massive Thirring system in laboratory coordinates. J Phys A Math Theor. 2019;52:03LT01. · Zbl 1422.81145
[40] XuT, PelinovskyDE.Darboux transformation and soliton solutions of the semi‐discrete massive Thirring model. Phys Lett A. 2019;383:125948. · Zbl 1477.81062
[41] HirotaR. 2004The Direct Method in Soliton Theory. Cambridge University Press; 2004.
[42] JimboM, MiwaT.Solitons and infinite‐dimensional Lie algebras. Publ Res Inst Math Sci. 1983;19:943‐1001. · Zbl 0557.35091
[43] FengBF.General N‐soliton solution to a vector nonlinear Schrödinger equation. J Phys A Math Theor. 2014;47:355203. · Zbl 1302.35346
[44] ShenS, FengBF, OhtaY.From the real and complex coupled dispersionless equations to the real and complex short pulse equations. Stud Appl Math. 2016;136:64‐88. · Zbl 1332.35331
[45] FengBF, MarunoK, OhtaY.Geometric formulation and multi‐dark soliton solution to the defocusing complex short pulse equation. Stud Appl Math. 2017;138:343‐367. · Zbl 1364.35308
[46] ChenJ, FengBF, MarunoK, OhtaY.The derivative Yajima‐Oikawa system: bright, dark soliton and breather solutions. Stud Appl Math. 2018;41:145‐185. · Zbl 1401.35264
[47] GerdjikovVS, IvanovMI, KulishPP.Quadratic bundle and nonlinear equations. Theor Math Phys. 1980;44:784‐795. · Zbl 0454.35071
[48] LiuS, WangJ, ZhangD.The Fokas‐Lenells equations: bilinear approach. Stud Appl Math. 2022;148:651‐688. · Zbl 1529.35474
[49] MatsunoY.A direct method of solution for the Fokas‐Lenells derivative nonlinear Schrödinger equation: I. Bright soliton solutions. J Phys A Math Theor. 2012;45:235202. · Zbl 1245.82055
[50] GilsonC, HietarintaJJ, NimmoJ, OhtaY.Sasa‐Satsuma higher‐order nonlinear Schröinger equation and its bilinearization and multisoliton solutions. Phys Rev E. 2003;68:016614.
[51] MatsunoY.The bright N‐soliton solution of a multi‐component modified nonlinear Schrödinger equation. J Phys A Math Theor. 2011;44:495202. · Zbl 1229.35272
[52] OhtaY, WangDS, YangJ.General N‐dark‐dark solitons in the coupled nonlinear Schrödinger equations. Stud Appl Math. 2011;127:345‐371. · Zbl 1244.35137
[53] MiyakeS, OhtaY, SatsumaJ.A representation of solutions for the KP hierarchy and its algebraic structure. J Phys Soc Jpn. 1990;59:48‐55.
[54] MatsunoY.A direct method of solution for the Fokas‐Lenells derivative nonlinear Schrödinger equation: II. Dark soliton solutions. J Phys A Math Theor. 2012;45:475202. · Zbl 1253.82068
[55] MatsunoY.Smooth and singular multisoliton solutions of a modified Camassa‐Holm equation with cubic nonlinearity and linear dispersion. J Phys A Math Theor. 2014;47:125203. · Zbl 1292.35076
[56] ShengHH, YuGF, FengBF. An integrable semi‐discretization of the modified Camassa‐Holm equation with linear dispersion term. Stud Appl Math. 2022;149:230‐265. https://doi.org/10.1111/sapm.12497 · Zbl 1533.35302 · doi:10.1111/sapm.12497
[57] FengBF, LingL, TakahashiDA.Multi‐breather and high‐order rogue waves for the nonlinear Schröinger equation on the elliptic function background. Stud Appl Math. 2020;144:46‐101. · Zbl 1454.35338
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.