×

General \(N\)-dark-dark solitons in the coupled nonlinear Schrödinger equations. (English) Zbl 1244.35137

Summary: \(N\)-dark-dark solitons in the integrable coupled NLS equations are derived by the KP-hierarchy reduction method. These solitons exist when nonlinearities are all defocusing, or both focusing and defocusing nonlinearities are mixed. When these solitons collide with each other, energies in both components of the solitons completely transmit through. This behavior contrasts collisions of bright-bright solitons in similar systems, where polarization rotation and soliton reflection can take place. It is also shown that in the mixed-nonlinearity case, two dark-dark solitons can form a stationary bound state.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
35Q51 Soliton equations

References:

[1] Benney, Nonlinear wave envelopes, J. Math. Phys. 46 pp 133– (1967) · Zbl 0153.30301 · doi:10.1002/sapm1967461133
[2] Agrawal, Nonlinear Fiber Optics (1989)
[3] Hasegawa, Solitons in Optical Communications (1995)
[4] Ablowitz, Solitons and the Inverse Scattering Transform (1981) · doi:10.1137/1.9781611970883
[5] Dalfovo, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71 pp 463– (1999) · doi:10.1103/RevModPhys.71.463
[6] Ho, Hartree-Fock theory for double condensates, Phys. Rev. Lett. 77 pp 3276– (1996) · doi:10.1103/PhysRevLett.77.3276
[7] Pu, Properties of two-species Bose condensates, Phys. Rev. Lett. 80 pp 1130– (1998) · doi:10.1103/PhysRevLett.80.1130
[8] Pu, Collective excitations, metastability, and nonlinear response of a trapped two-species Bose-Einstein condensate, Phys. Rev. Lett. 80 pp 1134– (1998) · doi:10.1103/PhysRevLett.80.1134
[9] Goldstein, Quasiparticle instabilities in multicomponent atomic condensates, Phys. Rev. A 55 pp 2935– (1997) · doi:10.1103/PhysRevA.55.2935
[10] Roskes, Some nonlinear multiphase interactions, Stud. Appl. Math. 55 pp 231– (1976) · Zbl 0345.76012 · doi:10.1002/sapm1976553231
[11] Menyuk, Nonlinear pulse propagation in birefringent optical fibers, IEEE J. Quantum Electron. 23 pp 174– (1987) · doi:10.1109/JQE.1987.1073308
[12] Zakharov, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. E’ksp. Teor. Fiz. 61 pp 118– (1971)
[13] Faddeev, Hamiltonian Methods in the Theory of Solitons (1987) · Zbl 1111.37001 · doi:10.1007/978-3-540-69969-9
[14] Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Zh. Eksp. Teor. Fiz 65 pp 1392– (1973)
[15] Zakharov, To the integrability of the system of two coupled nonlinear Schrödinger equations, Phys. 4D pp 270– (1982) · Zbl 1194.35435
[16] Wang, Integrable properties of the general coupled nonlinear Schrödinger equations, J. Math. Phys. 51 pp 023510– (2010) · Zbl 1309.35145 · doi:10.1063/1.3290736
[17] Sheppard, Polarized dark solitons in isotropic Kerr media, Phys. Rev. E 55 pp 4773– (1997) · doi:10.1103/PhysRevE.55.4773
[18] Radhakrishnan, Bright and dark soliton solutions to coupled nonlinear Schrödinger equations, J. Phys. A: Math. Gen. 28 pp 2683– (1995) · Zbl 0841.35110 · doi:10.1088/0305-4470/28/9/025
[19] Prinari, Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions, J. Math. Phys. 47 pp 063508– (2006) · Zbl 1112.37070 · doi:10.1063/1.2209169
[20] Kanna, Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations, Phys. Rev. E 73 pp 026604– (2006) · doi:10.1103/PhysRevE.73.026604
[21] Vijayajayanthi, Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrödinger equations, Phys. Rev. A 77 pp 013820– (2008) · doi:10.1103/PhysRevA.77.013820
[22] Prinari, Inverse scattering transform for the multi-component nonlinear Schrödinger equation with nonzero boundary conditions, Stud. Appl. Math. 126 pp 245– (2011) · Zbl 1218.35251 · doi:10.1111/j.1467-9590.2010.00504.x
[23] Date, Nonlinear Integrable Systems-Classical Theory and Quantum Theory pp 39– (1983)
[24] Takasaki, Geometry of universal Grassmann manifold from algebraic point of view, Rev. Math. Phys. 1 pp 1– (1989) · Zbl 0716.58001 · doi:10.1142/S0129055X8900002X
[25] Date, Operator approach to the Kadomtsev-Petviashvili equation-Transformation groups for soliton equations III, J. Phys. Soc. Jpn. 50 pp 3806– (1981) · Zbl 0571.35099 · doi:10.1143/JPSJ.50.3806
[26] Ohta, Wronskian solutions of soliton equations, RIMS Kokyuroku 684 pp 1– (1989)
[27] Hirota, The Direct Method in Soliton Theory (2004) · Zbl 1099.35111 · doi:10.1017/CBO9780511543043
[28] Miyake, A representation of solutions for the KP hierarchy and its algebraic structure, J. Phys. Soc. Jpn. 59 pp 48– (1990) · doi:10.1143/JPSJ.59.48
[29] Ohta, Casorati and discrete Gram type determinant representations of solutions to the discrete KP hierarchy, J. Phys. Soc. Jpn. 62 pp 1872– (1993) · Zbl 0972.37536 · doi:10.1143/JPSJ.62.1872
[30] Jimbo, Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci. 19 pp 943– (1983) · Zbl 0557.35091 · doi:10.2977/prims/1195182017
[31] Date, Method for generating discrete soliton equations II, J. Phys. Soc. Jpn. 51 pp 4125– (1982) · doi:10.1143/JPSJ.51.4125
[32] Freeman, Soliton solutions of the Korteweg de Vries and the Kadomtsev-Petviashvili equations: The Wronskian technique, Proc. R. Soc. A 389 pp 319– (1983) · Zbl 0588.35077 · doi:10.1098/rspa.1983.0112
[33] Nimmo, Wronskian determinants, the KP hierarchy and supersymmetric polynomials, J. Phys. A: Math. Gen. 22 pp 3213– (1989) · Zbl 0707.35139 · doi:10.1088/0305-4470/22/16/012
[34] Freeman, Two-component KP hierarchy and the classical Boussinesq equation, J. Phys. A: Math. Gen. 23 pp 4793– (1990) · Zbl 0719.35084 · doi:10.1088/0305-4470/23/21/020
[35] Nimmo, A bilinear Bäcklund transformation for the nonlinear Schrödinger equation, Phys. Lett. A 99 pp 279– (1983) · doi:10.1016/0375-9601(83)90884-8
[36] Freeman, Soliton solutions of nonlinear evolution equations, IMA J. Appl. Math. 32 pp 125– (1984) · Zbl 0542.35079 · doi:10.1093/imamat/32.1-3.125
[37] Nakamura, A bilinear N-soliton formula for the KP equation, J. Phys. Soc. Jpn. 58 pp 412– (1989) · doi:10.1143/JPSJ.58.412
[38] Nimmo, Darboux transformations for a two-dimensional Zakharov-Shabat/AKNS spectral problem, Inv. Prob. 8 pp 219– (1992) · Zbl 0755.35120 · doi:10.1088/0266-5611/8/2/005
[39] Zakharov, Theory of Solitons: The Inverse Scattering Method (1984)
[40] Shchesnovich, General soliton matrices in the Riemann-Hilbert problem for integrable nonlinear equations, J. Math. Phys. 44 pp 4604– (2003) · Zbl 1062.37083 · doi:10.1063/1.1605821
[41] Kivshar, Dark solitons in nonlinear optics, IEEE J. Quantum Electron 29 pp 250– (1993) · doi:10.1109/3.199266
[42] Buryak, Twin-hole dark solitons, Phys. Rev. A 51 pp R41– (1995) · doi:10.1103/PhysRevA.51.R41
[43] Ablowitz, On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation, SIAM J. Appl. Math. 50 pp 339– (1990) · Zbl 0707.35141 · doi:10.1137/0150021
[44] Li, Singularly Perturbed Vector and Scalar Nonlinear Schrödinger Equations with Persistent Homoclinic Orbits, Stud. Appl. Math. 109 pp 19– (2002) · Zbl 1152.35496 · doi:10.1111/1467-9590.00002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.