×

Formation of a nontrivial finite-time stable attractor in a class of polyhedral sweeping processes with periodic input. (English) Zbl 1533.34025

Summary: We consider a differential inclusion known as a polyhedral sweeping process. The general sweeping process was introduced by J.-J. Moreau as a modeling framework for quasistatic deformations of elastoplastic bodies, and a polyhedral sweeping process is typically used to model stresses in a network of elastoplastic springs. Krejčí’s theorem states that a sweeping process with periodic input has a global attractor which consists of periodic solutions, and all such periodic solutions follow the same trajectory up to a parallel translation. We show that in the case of polyhedral sweeping process with periodic input the attractor has to be a convex polyhedron \(\chi\) of a fixed shape. We provide examples of elastoplastic spring models leading to structurally stable situations where \(\chi\) is a one- or two- dimensional polyhedron. In general, an attractor of a polyhedral sweeping process may be either exponentially stable or finite-time stable and the main result of the paper consists of sufficient conditions for finite-time stability of the attractor, with upper estimates for the settling time. The results have implications for the shakedown theory.

MSC:

34A60 Ordinary differential inclusions
34D45 Attractors of solutions to ordinary differential equations
93D40 Finite-time stability
47J22 Variational and other types of inclusions
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)

References:

[1] V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems. Lecture Notes in Applied and Computational Mechanics. Springer-Verlag Berlin Heidelberg (2008) xxi+525. · Zbl 1173.74001
[2] S. Adly, H. Attouch and A. Cabot, Finite time stabilization of nonlinear oscillators subject to dry friction. Nonsmooth Mechanics and Analysis. Adv. Mech. Math., Vol. 12, Springer, New York (2006) 289-304. · doi:10.1007/0-387-29195-4_24
[3] S. Adly, A Variational Approach to Nonsmooth Dynamics: Applications in Unilateral Mechanics and Electronics. Springer Briefs in Mathematics (2017) xv+159. · Zbl 1391.49001
[4] R. Agarwal and V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations. WorldScientific (1993) 324. · Zbl 0785.34003
[5] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011) xvi+468. · Zbl 1218.47001
[6] S.P. Bhat and D.S. Bernstein, Lyapunov analysis of finite-time differential equations, in Proceedings of the American Control Conference. IEEE, Washington, USA (1995) 1831-1832.
[7] S.P. Bhat and D.S. Bernstein, Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000) 751-766. · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[8] F.J. Bejarano and L.M. Fridman, High order sliding mode observer for linear systems with unbounded unknown inputs. Int. J. Control. 9 (2010) 1920-1929. · Zbl 1213.93019 · doi:10.1080/00207179.2010.501386
[9] T. Bonnesen and W. Fenchel, Theory of convex Bodies. Translated from the German and edited by L. Boron, C. Christenson and B. Smith. BCS Associates (1987) x+172. · Zbl 0628.52001
[10] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer-Verlag, New York (2011) xiv+600. · Zbl 1220.46002
[11] B. Brogliato, Nonsmooth Mechanics: Models, Dynamics and Control. 3rd edn. Springer (2016). · Zbl 1333.74002 · doi:10.1007/978-3-319-28664-8
[12] A. Cabot, Stabilization of oscillators subject to dry friction: finite time convergence versus exponential decay results. Trans. Am. Math. Soc. 360 (2008) 103-121. · Zbl 1133.34008 · doi:10.1090/S0002-9947-07-03990-6
[13] F. Chernousko, I. Ananievskii and S. Reshmin, Control of Nonlinear Dynamical Systems: Methods and Applications. Springer-Verlag (2008) xii+396. · Zbl 1155.93001
[14] G. Colombo, P. Gidoni and E. Vilches, Stabilization of periodic sweeping processes and asymptotic average velocity for soft locomotors with dry friction. Discrete Contin. Dyn. Syst. Ser. A 42 (2022) 737-757. · Zbl 1513.70074 · doi:10.3934/dcds.2021135
[15] F. Dinuzzo and A. Ferrara, Higher order sliding mode controllers with optimal reaching. IEEE Trans. Automat. Contr. 54 (2009) 2126-2136. · Zbl 1367.93120 · doi:10.1109/TAC.2009.2026940
[16] H. Du, C. Qian, S. Yang and S. Li, Recursive design of finite-time convergent observers for a class of time-varying nonlinear systems. Automatica 49 (2013) 601-609. · Zbl 1259.93029 · doi:10.1016/j.automatica.2012.11.036
[17] C.O. Frederick and P.J. Armstrong, Convergent internal stresses and steady cyclic states of stress. J. Strain Anal. 1 (1966) 154-159. · doi:10.1243/03093247V012154
[18] A. Filippov, Differential Equations with Discontinuous Right-hand Sides. Springer Dordrecht, ser. Mathematics and Its Applications (Soviet Series) (1988) x+304. · Zbl 0664.34001
[19] P. Gidoni, Rate-independent soft crawlers. Q. J. Mech. Appl. Math. 71 (2018) 369-409. · Zbl 1451.74169
[20] B. Grünbaum, Convex Polytopes. 2nd edn. Graduate Texts in Mathematics, 221. Springer-Verlag, New York (2003) xvi+468. · Zbl 1024.52001
[21] I. Gudoshnikov and O. Makarenkov, Stabilization of the response of cyclically loaded lattice spring models with plasticity. ESAIM: COCV 27 (2021) S8. · Zbl 1484.74035 · doi:10.1051/cocv/2020043
[22] I. Gudoshnikov and O. Makarenkov, Structurally stable families of periodic solutions in sweeping processes of networks of elastoplastic springs. Phys. D 406 (2020) 132443. · Zbl 1495.34033 · doi:10.1016/j.physd.2020.132443
[23] I. Gudoshnikov, Y. Jiao, O. Makarenkov and D. Chen, Sweeping Process Approach to Stress Analysis in Elastoplastic Lattice Springs Models with Applications to Hyperuniform Network Materials. (2022) submitted, preprint available at arXiv:2204.03015.
[24] I. Gudoshnikov, O. Makarenkov and D. Rachinskiy, Finite-time stability of polyhedral sweeping processes with application to elastoplastic systems. SIAM J. Control Optim. 60 (2022) 1320-1346. · Zbl 07535618 · doi:10.1137/20M1388796
[25] W.M. Haddad and A. L’Afflitto, Finite-Time Stabilization and Optimal Feedback Control. IEEE Trans. Automat. Contr. 61 (2016) 1069-1074. · Zbl 1359.93366 · doi:10.1109/TAC.2015.2454891
[26] W. Han and B.D. Reddy, Plasticity. Mathematical Theory and Numerical Analysis. 2nd edn. Interdisciplinary Applied Mathematics, 9. Springer, New York (2013). · Zbl 1258.74002
[27] W.P.M.H. Heemels, J.M. Schumacher and S. Weiland, Linear complementarity systems. SIAM J. Appl. Math. 60 (2000) 1234-1269. · Zbl 0954.34007 · doi:10.1137/S0036139997325199
[28] J.B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis. Grundlehren Text Editions, Springer-Verlag, Berlin (2001) x+259. · Zbl 0998.49001
[29] Y. Hong, Finite-time stabilization and stabilizability of a class of controllable systems. Syst. Control Lett. 46 (2002) 231-236. · Zbl 0994.93049 · doi:10.1016/S0167-6911(02)00119-6
[30] Y. Hong, J. Wang and D. Cheng, Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Automat. Contr. 51 (2006) 858-862. · Zbl 1366.93290 · doi:10.1109/TAC.2006.875006
[31] P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. GAKUTO International Series. Mathematical Sciences and Applications, 8. Gakkōtosho Co. Ltd., Tokyo (1996) viii+211. · Zbl 1187.35003
[32] M. Kunze and M.D.M. Marques, An introduction to Moreau’s sweeping process, in Impacts in Mechanical Systems. Lecture Notes in Physics, edited by Brogliato, Vol. 551. Springer, Berlin, Heidelberg (2000). · doi:10.1007/BFb0103843
[33] J. Matoušek and B. Gärtner, Understanding and Using Linear Programming. Berlin, Springer (2007) viii+226. · Zbl 1133.90001
[34] B. Mordukhovich, Variational Analysis and Applications. Springer Monographs in Mathematics. Springer Cham (2018) xix+622. · Zbl 1402.49003
[35] J.-J. Moreau, On Unilateral Constraints, Friction and Plasticity. New Variational Techniques in Mathematical Physics (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo, Bressanone, 1973). Edizioni Cremonese, Rome (1974) 171-322.
[36] J.-J. Moreau, Application of convex analysis to the treatment of elastoplastic systems, in Applications of Methods of Functional Analysis to Problems in Mechanics: Joint Symposium IUTAM/IMU held in Marseille, September 1-6, 1975, edited by P. Germain and B. Nayroles. Springer (1976) 56-89. · Zbl 0337.73004
[37] J.-J. Moreau, Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177 (1999) 329-349. · Zbl 0968.70006 · doi:10.1016/S0045-7825(98)00387-9
[38] J.-J. Moreau, An introduction to unilateral dynamics, in Novel Approaches in Civil Engineering. Lecture Notes in Applied and Computational Mechanics, edited by M. Frémond and F. Maceri, Vol. 14. Springer, Berlin, Heidelberg (2004). · Zbl 1123.70014
[39] J. Nocedal and S.J. Wright, Numerical optimization. 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York, NY, (2006) xxii+664. · Zbl 1104.65059
[40] H. Pan, W. Sun and H. Gao, Finite-time vibration control for active suspension systems, in Vibration Control and Actuation of Large-Scale Systems, Emerging Methodologies and Applications in Modelling. Academic Press (2020) 185-223.
[41] C. Qian and W. Lin, Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control. Lett. 42 (2001) 185-200. · Zbl 0974.93050 · doi:10.1016/S0167-6911(00)00089-X
[42] R.T. Rockafellar, Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, NJ (1970) xviii+451. · Zbl 0193.18401
[43] A. Schrijver, Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons Ltd. (1987) 484.
[44] S. Seo, H. Shim and J.H. Seo, Global finite-time stabilization of a nonlinear system using dynamic exponent scaling. 47th IEEE Conference, Decision and Control, Cancun, Mexico, Dec. 9-11 (2008) 3805-3810.
[45] A. Shapiro, Differentiability properties of metric projections onto convex sets. J. Optim. Theory Appl. 169 (2016) 953-964. · Zbl 1342.90192 · doi:10.1007/s10957-016-0871-8
[46] V. Utkin, J. Guldner and J. Shi, Sliding Mode Control in Electro-mechanical Systems. CRC Press (2009) 503.
[47] S.T. Venkataraman and S. Gulati, Terminal sliding modes: a new approach to nonlinear control systems. Proc. 5th Int. Conf. Advanced Robotics, Pisa, Italy (1991) 443-448.
[48] S. Yua, X. Yub, B. Shirinzadehc and Z. Mand, Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41 (2005) 1957-1964. · Zbl 1125.93423
[49] X. Zhang, G. Feng and Y. Sun, Finite-time stabilization by state feedback control for a class of time-varying nonlinear systems. Automatica 48 (2012) 499-504. · Zbl 1244.93142 · doi:10.1016/j.automatica.2011.07.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.