×

High order sliding mode observer for linear systems with unbounded unknown inputs. (English) Zbl 1213.93019

Summary: A global observer is designed for strongly detectable systems with unbounded unknown inputs. The design of the observer is based on three steps. First, the system is extended taking the unknown inputs (and possibly some of their derivatives) as a new state; then, using a global high-order sliding mode differentiator, a new output of the system is generated in order to fulfil, what we will call, the Hautus condition, which finally allows decomposing the system, in new coordinates, into two subsystems; the first one being unaffected directly by the unknown inputs, and the state vector of the second subsystem is obtained directly from the original system output. Such decomposition permits designing of a Luenberger observer for the first subsystem, which satisfies the Hautus condition, i.e. all the outputs have relative degree one w.r.t. the unknown inputs. This procedure enables one to estimate the state and the unknown inputs using the least number of differentiations possible. Simulations are given in order to show the effectiveness of the proposed observer.

MSC:

93B07 Observability
93C05 Linear systems in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
93B12 Variable structure systems
Full Text: DOI

References:

[1] DOI: 10.1080/13873950412331335225 · Zbl 1060.93041 · doi:10.1080/13873950412331335225
[2] DOI: 10.1080/13873950600913787 · Zbl 1127.68078 · doi:10.1080/13873950600913787
[3] DOI: 10.1080/00207720701620043 · Zbl 1160.93303 · doi:10.1080/00207720701620043
[4] DOI: 10.1002/rnc.1190 · Zbl 1131.93011 · doi:10.1002/rnc.1190
[5] DOI: 10.1137/070700322 · Zbl 1194.93112 · doi:10.1137/070700322
[6] DOI: 10.1111/j.1934-6093.2003.tb00169.x · doi:10.1111/j.1934-6093.2003.tb00169.x
[7] DOI: 10.1007/3-540-45666-X_11 · doi:10.1007/3-540-45666-X_11
[8] DOI: 10.1080/00207720701409330 · Zbl 1128.93311 · doi:10.1080/00207720701409330
[9] DOI: 10.1002/acs.958 · Zbl 1128.93008 · doi:10.1002/acs.958
[10] DOI: 10.1080/00207720701409538 · Zbl 1128.93312 · doi:10.1080/00207720701409538
[11] Hashimoto H, Procedings of IECON’90 1 pp 34– (1990)
[12] DOI: 10.1016/0024-3795(83)90061-7 · Zbl 0528.93018 · doi:10.1016/0024-3795(83)90061-7
[13] Hui S, International Journal of Applied Mathematics and Computing Science 15 pp 431– (2005)
[14] DOI: 10.1016/S0005-1098(97)00209-4 · Zbl 0915.93013 · doi:10.1016/S0005-1098(97)00209-4
[15] DOI: 10.1080/0020717031000099029 · Zbl 1049.93014 · doi:10.1080/0020717031000099029
[16] Levant, A. 2006. Exact Differentiation of Signals with Unbounded Higher Derivatives. 45th IEEE Conference on Decision and Control. 13–15 December2006. pp.5585–5590. San Diego, California, USA
[17] DOI: 10.1109/TAC.1976.1101364 · Zbl 0334.93009 · doi:10.1109/TAC.1976.1101364
[18] DOI: 10.1080/00207720701419834 · Zbl 1128.93020 · doi:10.1080/00207720701419834
[19] DOI: 10.1016/j.automatica.2007.01.008 · Zbl 1130.93392 · doi:10.1016/j.automatica.2007.01.008
[20] DOI: 10.1109/TAC.1987.1104530 · Zbl 0618.93019 · doi:10.1109/TAC.1987.1104530
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.