×

Numerical solution of the Biot/elasticity interface problem using virtual element methods. (English) Zbl 1532.65079

Summary: We propose, analyse and implement a virtual element discretisation for an interfacial poroelasticity/elasticity consolidation problem. The formulation of the time-dependent poroelasticity equations uses displacement, fluid pressure and total pressure, and the elasticity equations are written in displacement-pressure formulation. The construction of the virtual element scheme does not require Lagrange multipliers to impose the transmission conditions (continuity of displacement and total traction, and no-flux for the fluid) on the interface. We show the stability and convergence of the virtual element method for different polynomial degrees, and the error bounds are robust with respect to delicate model parameters (such as Lamé constants, permeability, and storativity coefficient). Finally we provide some simple numerical examples that illustrate the properties of the scheme.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L10 Soil and rock mechanics
74L15 Biomechanical solid mechanics
76S05 Flows in porous media; filtration; seepage
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35D30 Weak solutions to PDEs
74S05 Finite element methods applied to problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids

Software:

poroelasticity

References:

[1] Ahmad, B.; Alsaedi, A.; Brezzi, F.; Marini, LD; Russo, A., Equivalent projectors for virtual element methods, Comput. Math. Appl., 66, 3, 376-391 (2013) · Zbl 1347.65172 · doi:10.1016/j.camwa.2013.05.015
[2] Anaya, V.; De Wijn, Z.; Gómez-Vargas, B.; Mora, D.; Ruiz-Baier, R., Rotation-based mixed formulations for an elasticity-poroelasticity interface problem, SIAM J. Sci. Comput., 42, 1, B225-B249 (2020) · Zbl 1455.65208 · doi:10.1137/19M1268343
[3] Anaya, V.; Khan, A.; Mora, D.; Ruiz-Baier, R., Robust a posteriori error analysis for rotation-based formulations of the elasticity/poroelasticity coupling, SIAM J. Sci. Comput., 44, 4, B964-B995 (2022) · Zbl 1492.65298 · doi:10.1137/21M1427516
[4] Antonietti, PF; Beirão da Veiga, L.; Mora, D.; Verani, M., A stream virtual element formulation of the Stokes problem on polygonal meshes, SIAM J. Numer. Anal., 52, 1, 386-404 (2014) · Zbl 1427.76198 · doi:10.1137/13091141X
[5] Badia, S., Hornkjøl, M., Khan, A., Mardal, K.-A., Martín, A.F., Ruiz-Baier, R.: Efficient and reliable divergence-conforming methods for an elasticity-poroelasticity interface problem. Comput. Math. Appl. 157, 173-194 (2024) · Zbl 07813442
[6] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, LD; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 1, 199-214 (2013) · Zbl 1416.65433 · doi:10.1142/S0218202512500492
[7] Beirão da Veiga, L.; Brezzi, F.; Marini, LD; Russo, A., Virtual element method for general second-order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci., 26, 4, 729-750 (2016) · Zbl 1332.65162 · doi:10.1142/S0218202516500160
[8] Beirão da Veiga, L.; Lovadina, C.; Vacca, G., Divergence free virtual elements for the Stokes problem on polygonal meshes, ESAIM: Math. Model. Numer. Anal., 51, 2, 509-535 (2017) · Zbl 1398.76094 · doi:10.1051/m2an/2016032
[9] Beirão da Veiga, L.; Lovadina, C.; Vacca, G., Virtual elements for the Navier-Stokes problem on polygonal meshes, SIAM J. Numer. Anal., 56, 3, 1210-1242 (2018) · Zbl 1397.65302 · doi:10.1137/17M1132811
[10] Beirão da Veiga, L.; Lovadina, C.; Russo, A., Stability analysis for the virtual element method, Math. Models Methods Appl. Sci., 27, 13, 2557-2594 (2017) · Zbl 1378.65171 · doi:10.1142/S021820251750052X
[11] Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, Vol. 44, p. xiv+685 (2013) · Zbl 1277.65092
[12] Boffi, D.; Botti, M.; Di Pietro, DA, A nonconforming high-order method for the Biot problem on general meshes, SIAM J. Sci. Comput., 38, 3, A1508-A1537 (2016) · Zbl 1337.76042 · doi:10.1137/15M1025505
[13] Botti, L., Botti, M., Di Pietro, D.A.: A Hybrid High-Order method for multiple-network poroelasticity. In: Polyhedral methods in geosciences, vol. 27. SEMA SIMAI. Springer, Cham, pp. 227-258 (2021) · Zbl 1470.76050
[14] Boon, WM; Kuchta, M.; Mardal, K-A; Ruiz-Baier, R., Robust preconditioners for perturbed saddle-point problems and conservative discretizations of Biot’s equations utilizing total pressure, SIAM J. Sci. Comput., 43, 4, B961-B983 (2021) · Zbl 07379628 · doi:10.1137/20M1379708
[15] Brenner, S.C., Scott, L.R. : The Mathematical Theory of finite Element Methods. Texts in Applied Mathematics, Vol. 15, No. 3. Springer, New York, p. xviii+397 (2008) · Zbl 1135.65042
[16] Brenner, SC; Sung, LY, Virtual element methods on meshes with small edges or faces, Math. Models Methods Appl. Sci., 28, 7, 1291-1336 (2018) · Zbl 1393.65049 · doi:10.1142/S0218202518500355
[17] Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical solution of initial-value problems in differential-algebraic equations. Classics Appl. Math. 14, x+256 (1996) · Zbl 0844.65058
[18] Bürger, R.; Kumar, S.; Mora, D.; Ruiz-Baier, R.; Verma, N., Virtual element methods for the three-field formulation of time-dependent linear poroelasticity, Adv. Comput. Math., 47 (2021) · Zbl 1469.65146 · doi:10.1007/s10444-020-09826-7
[19] Cangiani, A.; Georgoulis, EH; Pryer, T.; Sutton, OJ, A posteriori error estimates for the virtual element method, Numer. Math., 137, 4, 857-893 (2017) · Zbl 1384.65079 · doi:10.1007/s00211-017-0891-9
[20] Cangiani, A.; Manzini, G.; Sutton, OJ, Conforming and nonconforming virtual element methods for elliptic problems, IMA J. Numer. Anal., 37, 1317-1354 (2017) · Zbl 1433.65282
[21] Chen, L.; Wei, H.; Wen, M., An interface-fitted mesh generator and virtual element methods for elliptic interface problems, J. Comput. Phys., 334, 327-348 (2017) · Zbl 1380.65400 · doi:10.1016/j.jcp.2017.01.004
[22] Chen, Y.; Luo, Y.; Feng, M., Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem, Appl. Math. Comput., 219, 9043-9056 (2013) · Zbl 1290.74038
[23] Coulet, J.; Faille, I.; Girault, V.; Guy, N.; Nataf, F., A fully coupled scheme using virtual element method and finite volume for poroelasticity, Comput. Geosci., 24, 381-403 (2020) · Zbl 1434.86001 · doi:10.1007/s10596-019-09831-w
[24] Droniou, J.; Yemm, L., Robust hybrid high-order method on polytopal meshes with small faces, Comput. Methods Appl. Math., 22, 1, 47-71 (2022) · Zbl 1482.65204 · doi:10.1515/cmam-2021-0018
[25] Fu, G., A high-order HDG method for the Biot’s consolidation model, Comput. Math. Appl., 77, 1, 237-252 (2019) · Zbl 1442.65257 · doi:10.1016/j.camwa.2018.09.029
[26] Girault, V.; Pencheva, G.; Wheeler, MF; Wildey, T., Domain decomposition for poroelasticity and elasticity with DG jumps and mortars, Math. Models Methods Appl. Sci., 21, 169-213 (2011) · Zbl 1216.35153 · doi:10.1142/S0218202511005039
[27] Girault, V.; Lu, X.; Wheeler, MF, A posteriori error estimates for Biot system using Enriched Galerkin for flow, Comput. Methods Appl. Mech. Engrg., 369, e113185 (2020) · Zbl 1506.76075 · doi:10.1016/j.cma.2020.113185
[28] Girault, V.; Wheeler, MF; Ganis, B.; Mear, ME, A lubrication fracture model in a poro-elastic medium, Math. Models Methods Appl. Sci., 25, 587-645 (2015) · Zbl 1309.76194 · doi:10.1142/S0218202515500141
[29] Herrmann, LR, Elasticity equations for incompressible and nearly incompressible materials by a variational theorem, AIAA J., 3, 1896-1900 (1965) · doi:10.2514/3.3277
[30] Hong, Q.; Kraus, J., Parameter-robust stability of classical three-field formulation of Biot’s consolidation model, Electron. Trans. Numer. Anal., 48, 202-226 (2018) · Zbl 1398.65046 · doi:10.1553/etna_vol48s202
[31] Hosseinkhan, A.; Showalter, RE, Biot-pressure system with unilateral displacement constraints, J. Math. Anal. Appl., 497, 1, e124882 (2021) · Zbl 1465.35417 · doi:10.1016/j.jmaa.2020.124882
[32] Kanschat, G.; Rivière, B., A finite element method with strong mass conservation for Biot’s linear consolidation model, J. Sci. Comput., 77, 3, 1762-1779 (2018) · Zbl 1407.65192 · doi:10.1007/s10915-018-0843-2
[33] Kumar, S.; Oyarzúa, R.; Ruiz-Baier, R.; Sandilya, R., Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity, ESAIM: Math. Model. Numer. Anal., 54, 1, 273-299 (2020) · Zbl 1511.65114 · doi:10.1051/m2an/2019063
[34] Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society, p. viii+377 (2006) · Zbl 1095.34004
[35] Lee, JJ; Mardal, K-A; Winther, R., Parameter-robust discretization and preconditioning of Biot’s consolidation model, SIAM J. Sci. Comput., 39, A1-A24 (2017) · Zbl 1381.76183 · doi:10.1137/15M1029473
[36] Lee, JJ; Piersanti, E.; Mardal, K-A; Rognes, M., A mixed finite element method for nearly incompressible multiple-network poroelasticity, SIAM J. Sci. Comput., 41, 2, A722-A747 (2019) · Zbl 1417.65162 · doi:10.1137/18M1182395
[37] Mardal, KA; Rognes, ME; Thompson, TB, Accurate discretization of poroelasticity without Darcy stability. Stokes-Biot stability revisited, BIT Numer. Math., 61, 941-976 (2021) · Zbl 1470.65169 · doi:10.1007/s10543-021-00849-0
[38] Oyarzúa, R.; Ruiz-Baier, R., Locking-free finite element methods for poroelasticity, SIAM J. Numer. Anal., 54, 5, 2951-2973 (2016) · Zbl 1457.65210 · doi:10.1137/15M1050082
[39] Rivière, B.; Tan, J.; Thompson, T., Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations, Comput. Math. Appl., 73, 666-683 (2017) · Zbl 1368.65195 · doi:10.1016/j.camwa.2016.12.030
[40] Rodrigo, C.; Gaspar, FJ; Hu, X.; Zikatanov, LT, Stability and monotonicity for some discretizations of the Biot’s consolidation model, Comput. Methods Appl. Mech. Engrg., 298, 183-204 (2016) · Zbl 1425.74164 · doi:10.1016/j.cma.2015.09.019
[41] Ruiz-Baier, R.; Lunati, I., Mixed finite element—discontinuous finite volume element discretization of a general class of multicontinuum models, J. Comput. Phys., 322, 666-688 (2016) · Zbl 1351.76079 · doi:10.1016/j.jcp.2016.06.054
[42] Sreekumar, A.; Triantafyllou, SP; Bécot, F-X; Chevillotte, F., Multiscale VEM for the Biot consolidation analysis of complex and highly heterogeneous domains, Comput. Methods Appl. Mech. Engrg., 375, e113543 (2021) · Zbl 1506.74445 · doi:10.1016/j.cma.2020.113543
[43] Tang, X.; Liu, Z.; Zhang, B.; Feng, M., On the locking-free three-field virtual element methods for Biot’s consolidation model in poroelasticity, ESAIM Math. Model. Numer. Anal., 55, S909-S939 (2021) · Zbl 1481.65191 · doi:10.1051/m2an/2020064
[44] Vacca, G.; Beirão da Veiga, L., Virtual element methods for parabolic problems on polygonal meshes, Numer. Methods Partial Differ. Equ., 31, 6, 2110-2134 (2015) · Zbl 1336.65171 · doi:10.1002/num.21982
[45] Yi, S-Y, A study of two modes of locking in poroelasticity, SIAM J. Numer. Anal., 55, 1915-1936 (2017) · Zbl 1430.74140 · doi:10.1137/16M1056109
[46] Zhao, L., Chung, E., Park, E.-J.: A locking free staggered DG method for the Biot system of poroelasticity on general polygonal meshes. IMA J. Numer. Anal., in press (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.