×

Accurate discretization of poroelasticity without Darcy stability. (English) Zbl 1470.65169

Summary: In this manuscript we focus on the question: what is the correct notion of Stokes-Biot stability? Stokes-Biot stable discretizations have been introduced, independently by several authors, as a means of discretizing Biot’s equations of poroelasticity; such schemes retain their stability and convergence properties, with respect to appropriately defined norms, in the context of a vanishing storage coefficient and a vanishing hydraulic conductivity. The basic premise of a Stokes-Biot stable discretization is: one part Stokes stability and one part mixed Darcy stability. In this manuscript we remark on the observation that the latter condition can be generalized to a wider class of discrete spaces. In particular: a parameter-uniform inf-sup condition for a mixed Darcy sub-problem is not strictly necessary to retain the practical advantages currently enjoyed by the class of Stokes-Biot stable Euler-Galerkin discretization schemes.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74B10 Linear elasticity with initial stresses
76S05 Flows in porous media; filtration; seepage
35Q74 PDEs in connection with mechanics of deformable solids
35Q35 PDEs in connection with fluid mechanics

References:

[1] Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., Wells, G.: The FEniCS Project Version 1.5. Archive of Num. Soft. 3 (2015)
[2] Bærland, T.; Kuchta, M.; Mardal, KA; Thompson, T., An observation on the uniform preconditioners for the mixed Darcy problem, Numer. Methods Partial Differ. Equ., 36, 6, 1718-1734 (2020) · Zbl 07777669 · doi:10.1002/num.22500
[3] Bergh, J.; Löfström, J., Interpolation Spaces: A Series of Comprehensive Studies in Mathematics (1976), New York: Springer, New York · Zbl 0344.46071 · doi:10.1007/978-3-642-66451-9
[4] Boffi, D.; Brezzi, F.; Fortin, M., Mixed Finite Element Methods and Applications (2013), Berlin: Springer, Berlin · Zbl 1277.65092 · doi:10.1007/978-3-642-36519-5
[5] Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics (2002), Cambridge: Cambridge University Press, Cambridge
[6] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Publications mathématiques et informatique de Rennes, S4, 1-26 (1974) · Zbl 0338.90047
[7] Brun, M.K., Ahmed, E., Berre, I., Nordbotten, J.M., Radu, F.A.: Monolithic and splitting based solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport. arXiv preprint arXiv:1902.05783 (2019) · Zbl 1451.74204
[8] Ern, A.; Guermond, JL, Theory and Practice of Finite Elements (2004), Berlin: Springer, Berlin · Zbl 1059.65103 · doi:10.1007/978-1-4757-4355-5
[9] Ern, A., Meunier, S.: A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems. ESAIM: M2AN 43(2), 353-375 (2009). doi:10.1051/m2an:2008048 · Zbl 1166.76036
[10] Evans, L., Partial Differential Equations (2010), Providence, R.I.: American Mathematical Society, Providence, R.I. · Zbl 1194.35001
[11] Girault, V., Wheeler, M.F., Almani, T., Dana, S.: A priori error estimates for a discretized poro-elastic-elastic system solved by a fixed-stress algorithm. Oil Gas Sci. Technol. Revue d’IFP Energies nouvelles 74, 24 (2019)
[12] Guo, L.; Li, Z., Ventikos, Yea: On the validation of a multiple-network poroelastic model using arterial spin labeling MRI data, Front. Comput. Neurosci., 13, 60 (2019) · doi:10.3389/fncom.2019.00060
[13] Guo, L., Vardakis, J., Ventikos, Yea: Subject-specific multi-poroelastic model for exploring the risk factors associated with the early stages of Alzheimer’s disease. Interface Focus 8(1), 20170,019 (2018)
[14] Guzman, J.; Neilan, M., Conforming and divergence-free stokes elements in three dimensions, IMA J. Numer. Anal., 34, 4, 1489-1508 (2019) · Zbl 1305.76056 · doi:10.1090/mcom/3346
[15] Guzman, J.; Scott, L., The scott-vogelius finite elements revisited, Math. Comput., 88, 515-529 (2019) · Zbl 1405.65150 · doi:10.1090/mcom/3346
[16] Herrmann, LR, Elasticity equations for incompressible and nearly incompressible materials by a variational theorem, AIAA J., 3, 10, 1896-1900 (1965) · doi:10.2514/3.3277
[17] Hong, Q.; Kraus, J., Parameter-robust stability of classical three-field formulation of Biot’s consolidation model, Electron. T. Numer. Anal., 48, 202-226 (2018) · Zbl 1398.65046 · doi:10.1553/etna_vol48s202
[18] Hong, Q.; Kraus, J.; Lymbery, M.; Wheeler, MF, Parameter-robust convergence analysis of fixed-stress split iterative method for multiple-permeability poroelasticity systems, Multiscale Model. Simul., 18, 2, 916-941 (2020) · Zbl 1447.65077 · doi:10.1137/19M1253988
[19] Hu, X.; Rodrigo, C.; Gaspar, FJ; Zikatanov, L., A nonconforming finite element method for the Biot’s consolidation model in poroelasticity, J. Comput. Appl. Math., 310, 143-154 (2017) · Zbl 1381.76175 · doi:10.1016/j.cam.2016.06.003
[20] Kraus, J., Lederer, P., Lymbery, M., Schoberl, J.: Uniformly well-posed hybridized discontinuous Galerkin/hybrid mixed discretizations for Biot’s consolidation model. Cold Spring Harbor Lab. (preprint) arXiv:2012.08584 (2020)
[21] Kumar, S.; Oyarzúa, R.; Ruiz-Baier, R.; Sandilya, R., Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity, ESAIM Math. Model. Numer. Anal., 54, 1, 273-299 (2020) · Zbl 1511.65114 · doi:10.1051/m2an/2019063
[22] Lee, J., Robust three-field finite element methods for Biot’s consolidation model in poroelasticity, BIT Numer. Math., 58, 2, 347-372 (2018) · Zbl 1428.65044 · doi:10.1007/s10543-017-0688-3
[23] Lee, J.; Mardal, KA; Winther, R., Parameter-robust discretization and preconditioning of Biot’s consolidation model, SIAM J. Scie. Comput., 39, 1, A1-A24 (2017) · Zbl 1381.76183 · doi:10.1137/15M1029473
[24] Lee, J.; Piersanti, E.; Mardal, KA; Rognes, M., A mixed finite element method for nearly incompressible multiple-network poroelasticity, SIAM J. Sci. Comput., 41, 2, A722-A747 (2019) · Zbl 1417.65162 · doi:10.1137/18M1182395
[25] Li, X.; Holst, H.; Kleiven, S., Influences of brain tissue poroelastic constants on intracranial pressure (ICP) during constant-rate infusion, Comput. Methods Biomech. Biomed. Eng., 16, 12, 1330-1343 (2013) · doi:10.1080/10255842.2012.670853
[26] Lipnikov, K.: Numerical methods for the Biot model in poroelasticity. Ph.D. thesis, University of Houston (2002)
[27] Lotfian, Z.; Sivaselvan, M., Mixed finite element formulation for dynamics of porous media, Int. J. Numer. Methods Eng., 115, 141-171 (2018) · Zbl 07864832 · doi:10.1002/nme.5799
[28] Oyarzúa, R.; Ruiz-Baier, R., Locking-free finite element methods for poroelasticity, SIAM J. Numer. Anal., 54, 5, 2951-2973 (2016) · Zbl 1457.65210 · doi:10.1137/15M1050082
[29] Riviere, B.: Discontinuous Galerkin methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Society for Industrial and Applied Mathematics (2008) · Zbl 1153.65112
[30] Rodrigo, C.; Hu, X.; Ohm, P.; Adler, JH; Gaspar, FJ; Zikatanov, L., New stabilized discretizations for poroelasticity and the Stokes’ equations, Comput. Methods Appl. Mech. Eng., 341, 467-484 (2018) · Zbl 1440.76027 · doi:10.1016/j.cma.2018.07.003
[31] Showalter, R., Diffusion in poro-elastic media, J. Math. Anal. Appl., 24, 251, 310-340 (2000) · Zbl 0979.74018 · doi:10.1006/jmaa.2000.7048
[32] Storvik, E.; Both, JW; Kumar, K.; Nordbotten, JM; Radu, FA, On the optimization of the fixed-stress splitting for biot’s equations, Int. J. Numer. Methods Eng., 120, 2, 179-194 (2019) · Zbl 07859732 · doi:10.1002/nme.6130
[33] Thompson, T.; Riviere, B.; Knepley, M., An implicit discontinuous galerkin method for modeling acute edema and resuscitation in the small intestine, Math Med. Biol., 36, 4, 513-548 (2019) · Zbl 1501.92018 · doi:10.1093/imammb/dqz001
[34] Young, J.; Riviere, B., A mathematial model of intestinal oedema formation, Math. Med. Biol., 31, 1, 1-15 (2014) · Zbl 1304.92073 · doi:10.1093/imammb/dqs025
[35] Zenisek, A., The existence and uniqueness theorem in Biot’s consolidation theory, Aplikace Matematiky, 29, 3, 194-211 (1984) · Zbl 0557.35005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.