×

Solutions of spinorial Yamabe-type problems on \(S^m\): perturbations and applications. (English) Zbl 1532.58017

The paper is concerned with the nonlinear Dirac equation \[ D_g\psi = f(x)|\psi|_g^{\frac{2}{m-1}}\psi \quad \text{ on the sphere }(S^m,g),\quad m\geq 2,\tag{\(\ast\)} \] where \(D_g\) is the Atiyah-Singer-Dirac operator. Due to the critical exponent this equation is a spinorial analogue of the Yamabe equation. The authors deal with two special cases: the case where \(g=g_{S^m}\) is the standard round metric and \(f:S^m\to\mathbb{R}\) is close to \(1\); and the case where \(f\equiv1\) and \(g\) is close to \(g_{S^m}\). In the first case they consider functions of the form \(f=1+\varepsilon H\), and show that \((*)\) has a solution for \(\varepsilon\) small, for generic \(H\) in a certain class of functions \(S^m\to\mathbb{R}\). In the second case they construct metrics on \(S^m\) that are close to \(g_{S^m}\) but not conformally equivalent such that \((*)\) has multiple solutions. As a consequence of the first result they obtain multiple conformal embeddings of \((S^2,g_{S^2})\) into \((\mathbb{R}^3,g_{\mathbb{R}^3})\) whose images have mean curvature \(1+\varepsilon H\). As a consequence of the second result they can prove the strict inequality in the spinorial analogue of Aubin’s inequality from [B. Ammann et al., Math. Z. 260, No. 1, 127–151 (2008; Zbl 1145.53039)]. The existence results for solutions of \((*)\) are based on perturbation methods in critical point theory.

MSC:

58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
58J37 Perturbations of PDEs on manifolds; asymptotics
58J90 Applications of PDEs on manifolds
53C27 Spin and Spin\({}^c\) geometry
35R01 PDEs on manifolds

Citations:

Zbl 1145.53039

References:

[1] Adams, Robert A., Sobolev spaces, Pure and Applied Mathematics, Vol. 65, xviii+268 pp. (1975), Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0314.46030
[2] Aleksandrov, A. D., Uniqueness theorems for surfaces in the large. I, Amer. Math. Soc. Transl. (2), 341-354 (1962) · Zbl 0122.39601 · doi:10.1090/trans2/021/09
[3] Ambrosetti, Antonio, Homoclinics: Poincar\'{e}-Melnikov type results via a variational approach, Ann. Inst. H. Poincar\'{e} C Anal. Non Lin\'{e}aire, 233-252 (1998) · Zbl 1004.37043 · doi:10.1016/S0294-1449(97)89300-6
[4] Ambrosetti, Antonio, Variational perturbative methods and bifurcation of bound states from the essential spectrum, Proc. Roy. Soc. Edinburgh Sect. A, 1131-1161 (1998) · Zbl 0928.34029 · doi:10.1017/S0308210500027268
[5] Ambrosetti, A., Perturbation of \(\Delta u+u^{(N+2)/(N-2)}=0\), the scalar curvature problem in \(\mathbf{R}^N\), and related topics, J. Funct. Anal., 117-149 (1999) · Zbl 0938.35056 · doi:10.1006/jfan.1999.3390
[6] Ambrosetti, Antonio, A multiplicity result for the Yamabe problem on \(S^n\), J. Funct. Anal., 529-561 (1999) · Zbl 0949.53028 · doi:10.1006/jfan.1999.3458
[7] Ambrosetti, Antonio, Perturbation methods and semilinear elliptic problems on \(\mathbf{R}^n\), Progress in Mathematics, xii+183 pp. (2006), Birkh\"{a}user Verlag, Basel · Zbl 1115.35004 · doi:10.1007/3-7643-7396-2
[8] B. Ammann, A variational problem in conformal spin geometry, Habilitationsschrift, Universit\"at Hamburg, 2003.
[9] Ammann, Bernd, The smallest Dirac eigenvalue in a spin-conformal class and cmc immersions, Comm. Anal. Geom., 429-479 (2009) · Zbl 1185.58013 · doi:10.4310/CAG.2009.v17.n3.a2
[10] Ammann, Bernd, Mass endomorphism, surgery and perturbations, Ann. Inst. Fourier (Grenoble), 467-487 (2014) · Zbl 1320.53053
[11] Ammann, B., A spinorial analogue of Aubin’s inequality, Math. Z., 127-151 (2008) · Zbl 1145.53039 · doi:10.1007/s00209-007-0266-5
[12] Ammann, Bernd, Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds, Comm. Anal. Geom., 163-182 (2006) · Zbl 1126.53024
[13] Bahri, A., The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal., 106-172 (1991) · Zbl 0722.53032 · doi:10.1016/0022-1236(91)90026-2
[14] Bourguignon, Jean-Pierre, Spineurs, op\'{e}rateurs de Dirac et variations de m\'{e}triques, Comm. Math. Phys., 581-599 (1992) · Zbl 0755.53009
[15] Chang, Kung-ching, Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, x+312 pp. (1993), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0779.58005 · doi:10.1007/978-1-4612-0385-8
[16] Chang, Sun-Yung A., A perturbation result in prescribing scalar curvature on \(S^n\), Duke Math. J., 27-69 (1991) · Zbl 0739.53027 · doi:10.1215/S0012-7094-91-06402-1
[17] Chang, Sun-Yung A., The scalar curvature equation on \(2\)- and \(3\)-spheres, Calc. Var. Partial Differential Equations, 205-229 (1993) · Zbl 0822.35043 · doi:10.1007/BF01191617
[18] Friedrich, Thomas, On the spinor representation of surfaces in Euclidean \(3\)-space, J. Geom. Phys., 143-157 (1998) · Zbl 0966.53042 · doi:10.1016/S0393-0440(98)00018-7
[19] Friedrich, Thomas, Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, xvi+195 pp. (2000), American Mathematical Society, Providence, RI · Zbl 0949.58032 · doi:10.1090/gsm/025
[20] Ginoux, Nicolas, The Dirac spectrum, Lecture Notes in Mathematics, xvi+156 pp. (2009), Springer-Verlag, Berlin · Zbl 1186.58020 · doi:10.1007/978-3-642-01570-0
[21] K. Grosse-Brauckmann, Complete embedded constant mean curvature surfaces, Habilitationsschrift, Universit\"at Bonn, 1998.
[22] Hermann, Andreas, Generic metrics and the mass endomorphism on spin three-manifolds, Ann. Global Anal. Geom., 163-171 (2010) · Zbl 1185.53014 · doi:10.1007/s10455-009-9179-3
[23] Hijazi, Oussama, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Comm. Math. Phys., 151-162 (1986) · Zbl 0593.58040
[24] Hitchin, Nigel, Harmonic spinors, Advances in Math., 1-55 (1974) · Zbl 0284.58016 · doi:10.1016/0001-8708(74)90021-8
[25] Hopf, Heinz, Differential geometry in the large, Lecture Notes in Mathematics, vii+184 pp. (1983), Springer-Verlag, Berlin · Zbl 0669.53001 · doi:10.1007/978-3-662-21563-0
[26] Isobe, Takeshi, Nonlinear Dirac equations with critical nonlinearities on compact Spin manifolds, J. Funct. Anal., 253-307 (2011) · Zbl 1217.58013 · doi:10.1016/j.jfa.2010.09.008
[27] Isobe, Takeshi, A perturbation method for spinorial Yamabe type equations on \(S^m\) and its application, Math. Ann., 1255-1299 (2013) · Zbl 1288.35411 · doi:10.1007/s00208-012-0818-9
[28] Isobe, Takeshi, Spinorial Yamabe type equations on \(S^3\) via Conley index, Adv. Nonlinear Stud., 39-60 (2015) · Zbl 1316.35249 · doi:10.1515/ans-2015-0103
[29] Kenmotsu, Katsuei, Weierstrass formula for surfaces of prescribed mean curvature, Math. Ann., 89-99 (1979) · Zbl 0402.53002 · doi:10.1007/BF01428799
[30] Konopelchenko, B. G., Induced surfaces and their integrable dynamics, Stud. Appl. Math., 9-51 (1996) · Zbl 0869.58027 · doi:10.1002/sapm19969619
[31] R. Kusner and N. Schmitt, The spinor representation of surfaces in space, dg-ga/9610005.
[32] Lawson, H. Blaine, Jr., Spin geometry, Princeton Mathematical Series, xii+427 pp. (1989), Princeton University Press, Princeton, NJ · Zbl 0688.57001
[33] Li, Peter, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math., 269-291 (1982) · Zbl 0503.53042 · doi:10.1007/BF01399507
[34] Maalaoui, Ali, Infinitely many solutions for the spinorial Yamabe problem on the round sphere, NoDEA Nonlinear Differential Equations Appl., Art. 25, 14 pp. (2016) · Zbl 1358.58009 · doi:10.1007/s00030-016-0382-1
[35] Malchiodi, Andrea, The scalar curvature problem on \(S^n\): an approach via Morse theory, Calc. Var. Partial Differential Equations, 429-445 (2002) · Zbl 1012.53035 · doi:10.1007/s005260100110
[36] Matsutani, Shigeki, Immersion anomaly of Dirac operator on surface in \(\mathbf R^3\), Rev. Math. Phys., 171-186 (1999) · Zbl 0982.53004 · doi:10.1142/S0129055X99000076
[37] Mawhin, Jean, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, xiv+277 pp. (1989), Springer-Verlag, New York · Zbl 0676.58017 · doi:10.1007/978-1-4757-2061-7
[38] Mondino, Andrea, Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds, Ann. Inst. H. Poincar\'{e} C Anal. Non Lin\'{e}aire, 707-724 (2014) · Zbl 1300.53042 · doi:10.1016/j.anihpc.2013.07.002
[39] Raulot, Simon, A Sobolev-like inequality for the Dirac operator, J. Funct. Anal., 1588-1617 (2009) · Zbl 1166.58017 · doi:10.1016/j.jfa.2008.11.007
[40] Y. Sire and T. Xu, A variational analysis of the spinorial Yamabe equation on product manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 24 (2023), no. 5, 205-248. · Zbl 1526.53051
[41] Struwe, Michael, Variational methods, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], xvi+272 pp. (1996), Springer-Verlag, Berlin · Zbl 0864.49001 · doi:10.1007/978-3-662-03212-1
[42] Taimanov, Iskander A., Solitons, geometry, and topology: on the crossroad. Modified Novikov-Veselov equation and differential geometry of surfaces, Amer. Math. Soc. Transl. Ser. 2, 133-151 (1997), Amer. Math. Soc., Providence, RI · Zbl 0896.53006 · doi:10.1090/trans2/179/07
[43] Ta\u{\i }manov, I. A., The Weierstrass representation of closed surfaces in \(\mathbf{R}^3\), Funct. Anal. Appl.. Funktsional. Anal. i Prilozhen., 49-62, 96 (1998) · Zbl 0979.53012 · doi:10.1007/BF02463208
[44] Ta\u{\i }manov, I. A., The Weierstrass representation of spheres in \(\mathbf R^3\), Willmore numbers, and soliton spheres, Proc. Steklov Inst. Math.. Tr. Mat. Inst. Steklova, 339-361 (1999) · Zbl 0985.35075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.