×

Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds. (English) Zbl 1300.53042

The authors focus on minimization of curvature functionals in three-dimensional Riemannian manifolds when the ambient space is non-compact. Specifically, they study the minimizers of the Willmore functional among immersed spheres in the three-dimensional Euclidean space. Then they deal with the minimization of related curvature functionals in non-compact three-dimensional Riemannian manifolds. Applications to general relativity are discussed.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
58E99 Variational problems in infinite-dimensional spaces
35J60 Nonlinear elliptic equations

References:

[1] Ambrosetti, A.; Malchiodi, A., Nonlinear Analysis and Semilinear Elliptic Problems, Camb. Stud. Adv. Math. (2007), Cambridge Univ. Press · Zbl 1125.47052
[2] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (2001), Springer · Zbl 0691.35001
[3] Kuwert, E.; Mondino, A.; Schygulla, J., Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds (2011), preprint
[4] Kuwert, E.; Schätzle, R., Removability of isolated singularities of Willmore surfaces, Ann. Math., 160, 1, 315-357 (2004) · Zbl 1078.53007
[5] Lamm, T.; Metzger, J., Small surfaces of Willmore type in Riemannian manifolds, Int. Math. Res. Not. IMRN, 19, 3786-3813 (2010) · Zbl 1202.53056
[6] Lamm, T.; Metzger, J.; Schulze, F., Foliations of asymptotically flat manifolds by surfaces of Willmore type, Math. Ann., 350, 1-78 (2011) · Zbl 1222.53028
[7] Lee, J. M.; Parker, T. H., The Yamabe problem, Bull., New Ser., Am. Math. Soc., 17, 1, 37-91 (July 1987) · Zbl 0633.53062
[8] Li, P.; Yau, S. T., A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue on compact surfaces, Invent. Math., 69, 269-291 (1982) · Zbl 0503.53042
[10] Mondino, A., Some results about the existence of critical points for the Willmore functional, Math. Zeit., 266, 3, 583-622 (2010) · Zbl 1205.53046
[11] Mondino, A., The conformal Willmore Functional: a perturbative approach, J. Geom. Anal., 1-48 (24 September 2011), online first
[12] Neves, A.; Tian, G., Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds, Geom. Funct. Anal., 19, 910-942 (2009) · Zbl 1187.53027
[13] Rivière, T., Analysis aspects of Willmore surfaces, Invent. Math., 174, 1, 1-45 (2008) · Zbl 1155.53031
[14] Schoen, R.; Yau, S. T., On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., 65, 45-76 (1979) · Zbl 0405.53045
[15] Schygulla, J., Willmore minimizers with prescribed isoperimetric ratio, Arch. Ration. Mech. Anal., 203, 3, 901-941 (2012) · Zbl 1288.74027
[16] Simon, L., Existence of surfaces minimizing the Willmore functional, Commun. Anal. Geom., 1, 2, 281-325 (1993) · Zbl 0848.58012
[17] Simon, L., Lectures on Geometric Measure Theory, Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 3 (1983), Austral. Nat. Univ.: Austral. Nat. Univ. Canberra, Australia · Zbl 0546.49019
[18] Willmore, T. J., Riemannian Geometry, Oxford Sci. Publ. (1993), Oxford University Press · Zbl 0797.53002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.