×

Nonexistence of anti-symmetric solutions for an elliptic system involving fractional Laplacian. (English) Zbl 1532.35504

Summary: In this paper, we are concerned with the anti-symmetric solutions to the following elliptic system involving fractional Laplacian \[ \begin{cases} (-\Delta)^su(x)=u^{m_1}(x)v^{n_1}(x), \quad & u(x)\geq 0,\, x\in\mathbb{R}_+^n,\\ (-\Delta)^sv(x)=u^{m_2}(x)v^{n_2}(x), & v(x)\geq 0,\,x\in\mathbb{R}_+^n,\\ u(x^{\prime},-x_n)=-u(x^{\prime},x_n), & x=(x^{\prime},x_n)\in\mathbb{R}^n,\\ v(x^{\prime},-x_n)=-v(x^{\prime},x_n), & x=(x^{\prime},x_n)\in\mathbb{R}^n, \end{cases} \] where \(0 < s < 1\), \(m_i, n_i > 0_{(i=1,2)}\), \(n > 2s\), \(\mathbb{R}_+^n =\{(x^{\prime},x_n)|x_n>0\} \). We first show that the solutions only depend on \(x_n\) variable by the method of moving planes. Moreover, we can obtain the monotonicity of solutions with respect to \(x_n\) variable (for the critical and subcritical cases \(m_i+n_i\leq \frac{n+2s}{n-2s}\,_{(i=1,2)}\) in the \(\mathcal{L}_{2s}\) space). Furthermore, when \(m_1=n_2=p\), \(n_1=m_2=q \), in the cases \(p+q+2s\geq 1 \), we obtain a Liouville theorem for the cases \(p+q\leq \frac{n+2s}{n-2s}\) in the \(\mathcal{L}_{2s}\) space. Then, through the doubling lemma, we obtain the singularity estimates of the positive solutions on a bounded domain \(\Omega \). Using the anti-symmetric property of the solutions, one can extend the space from \(\mathcal{L}_{2s}\) to \(\mathcal{L}_{2s+1} \), we can still prove the Liouville theorem in the extended space. With the extension, we prove the existence of nontrivial solutions.

MSC:

35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B09 Positive solutions to PDEs
35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs
35J47 Second-order elliptic systems
35S05 Pseudodifferential operators as generalizations of partial differential operators
Full Text: DOI

References:

[1] Lei, Y.On the regularity of positive solutions of a class of Choquard type equations. Math Z. 2013;273(3-4):883-905. · Zbl 1267.45010
[2] Barlow, M, Bass, R, Chen, Z, et al. Non-local Dirichlet forms and symmetric jump processes. Trans Amer Math Soc. 2009;361(04):1963-1999. · Zbl 1166.60045
[3] Zaslavsky, G.Hamiltonian chaos and fractional dynamics. Oxford University Press on Demand; 2005. · Zbl 1083.37002
[4] David, A.L \(\acute{e}\) vy processes-From probability to finance and quantum groups. Not Am Math Soc. 2004;51(11):1336-1347. · Zbl 1053.60046
[5] Bouchaud, J, Georges, A.Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys Rep. 1990;195(4-5):127-293.
[6] Caffarelli, L, Vasseur, L.Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann Math. 2010;171(3):1903-1930. · Zbl 1204.35063
[7] Tarasov, V, Zaslavsky, G.Fractional dynamics of systems with long-range interaction. Commun Nonlinear Sci Numer Simul. 2006;11(8):885-898. · Zbl 1106.35103
[8] Zhang, R, Wang, X, Yang, Z.Symmetry and nonexistence of positive solutions for an elliptic system involving the fractional Laplacian. Quaest Math. 2022;45(2):247-265. · Zbl 1486.35453
[9] Friedman, A.Blow-up of solutions of nonlinear parabolic equations. New York: Springer; 1988.
[10] Mitidieri, E.A Rellich type identity and applications. Commun Partial Differ Equ. 1993;18(1-2):125-151. · Zbl 0816.35027
[11] Yang, Z, Lu, Q.Non-existence of positive solution to a quasilinear elliptic system and blow-up estimates for a reaction-diffusion system. Commun Nonlinear Sci Numer Simul. 2001;6(4):222-226. · Zbl 0994.35061
[12] Li, Y, Lei, Y.On existence and nonexistence of positive solutions of an elliptic system with coupled terms. Commun Pure Appl (CPAA). 2018;17(5):1749-1764. · Zbl 1398.35043
[13] Marie-Francoise, B-V, Thierry, R.Asymptotics of solutions of some nonlinear elliptic systems. Commun Partial Differ Equ. 1996;21(7-8):1035-1086. · Zbl 0932.35075
[14] Lane, J.On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases known to terrestrial experiment. Am J Sci. 1870;s2-50(148):57-74.2nd Ser.
[15] Emden, R.Gaskugeln: anwendungen der mechanischen warmetheorie auf kosmologische und meteorologische probleme. Berlin: Teubner; 1907. · JFM 38.0952.02
[16] Serrin, J, Zou, H.Non-existence of positive solutions of Lane-Emden systems. Differ Integral Equ. 1996;9:635-653. · Zbl 0868.35032
[17] Peletier, L, van der Vorst, RCAM.Existence and non-existence of positive solutions of nonlinear elliptic systems and the biharmonic equation. Differ Integral Equ. 1992;5:747-767. · Zbl 0758.35029
[18] Clement, P, de Figueiredo, DG, Mitidier, E.Positive solutions of semilinear elliptic systems. Commun Partial Differ Equ. 1992;17(5-6):923-940. · Zbl 0818.35027
[19] Pol \(\acute{a}\check{c}\) ik, P, Quittner, P, Souplet, P.Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: elliptic equations and systems. Duke Math J. 2007;139:555-579. · Zbl 1146.35038
[20] Souplet, P.The proof of the Lane-Emden conjecture in four space dimensions. Adv Math. 2009;221(5):1409-1427. · Zbl 1171.35035
[21] Qin, D, R \(\breve{a}\) dulescu, V, Tang, X.Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations. J Differ Equ. 2021;275:652-683. · Zbl 1456.35187
[22] Ambrosio, V, Isernia, T, R \(\breve{a}\) dulescu, V.Concentration of positive solutions for a class of fractional p-Kirchhoff type equations. Proc Roy Soc Edinburgh Sect. 2021;151(2):601-651. · Zbl 07342500
[23] Zhang, W, Yuan, S, Wen, L.Existence and concentration of ground-states for fractional Choquard equation with indefinite potential. Adv Nonlinear Anal. 2022;11(1):1552-1578. · Zbl 1494.35173
[24] Zhang, W, Zhang, J, Mi, H.Ground states and multiple solutions for Hamiltonian elliptic system with gradient term. Adv Nonlinear Anal. 2021;10(1):331-352. · Zbl 1448.35178
[25] Zhang, W, Zhang, J.Multiplicity and concentration of positive solutions for fractional unbalanced double-phase problems. J Geom Anal. 2022;32(9):48.Paper No. 235. · Zbl 1494.35174
[26] Ni, W.On the elliptic equation \(\Delta u + K(x)u^{\frac{n+2}n-2}=0 \) , its generalizations, and applications in geometry. Indiana Univ Math J. 1982;31(4):493-529. · Zbl 0496.35036
[27] Ni, W, Serrin, J.Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case. Accad Naz Lincei. 1986;77:231-257.
[28] Gidas, B, Spruck, J.Global and local behavior of positive solutions of nonlinear elliptic equations. Comm Pure Appl Math. 1981;34(4):525-598. · Zbl 0465.35003
[29] Caffarelli, L, Gidas, B, Spruck, J.Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm Pure Appl Math. 1989;42(3):271-297. · Zbl 0702.35085
[30] Chen, W, Li, C.Classification of solutions of some nonlinear elliptic equations. Duke Math J. 1991;63(3):615-622. · Zbl 0768.35025
[31] Zhuo, R, Li, C.Classification of anti-symmetric solutions to nonlinear fractional Laplace equations. Calc Var. 2022;61(1):17. · Zbl 1480.35402
[32] Wu, L, Yu, M, Zhang, B.Monotonicity results for the fractional p-Laplacian in unbounded domains. Bull Math Sci. 2021;11(02):2150003. · Zbl 1476.35322
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.