×

Classification of anti-symmetric solutions to nonlinear fractional Laplace equations. (English) Zbl 1480.35402

Summary: We study anti-symmetric solutions to nonlinear equations \((-\Delta)^su=u^p\) involving fractional Laplacian operators of order \(2s\). First, in the often used defining space \(L_{2s}\), we establish a Liouvill type theorem. Some suitable forms of maximum principles and some subtle lower bounds of the solutions are the key ingredients here. Second, observing the anti-symmetric property of the solutions, we extend the usual defining space \(L_{2s}\) for \((-\Delta)^s\) to \(L_{2s+1}\). It is very interesting to see the existence of solutions in the expanded and somewhat more natural space. In fact, we show the existence of non-trivial solutions when \(p+2s <1\) and the nonexistence when \(p+2s>1\). Finding a suitable super-solution is an important step in constructing non-trivial solutions.

MSC:

35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B09 Positive solutions to PDEs
35B50 Maximum principles in context of PDEs
35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs
35J61 Semilinear elliptic equations
35S05 Pseudodifferential operators as generalizations of partial differential operators
Full Text: DOI

References:

[1] Applebaum, D., Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1200.60001 · doi:10.1017/CBO9780511809781
[2] Berestycki, H.; Caffarelli, L.; Nirenberg, L., Monotonicity for elliptic equations in unbounded Lipschitz domains, Commun. Pure Appl. Math., 50, 1089-1111 (1997) · Zbl 0906.35035 · doi:10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6
[3] Bertoin, J., Lévy Processes. Cambridge Tracts in Mathematics (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0861.60003
[4] Bouchard, J.; Georges, A., Anomalous diffusion in disordered media, statistical mechanics, models and physical applications, Phys. Rep., 195, 127-293 (1990) · doi:10.1016/0370-1573(90)90099-N
[5] Berestycki, H.; Nirenberg, L., On the method of moving planes and the sliding method, Bol. Soc. Brazil. Mat. (N.S.), 1, 1-37 (1991) · Zbl 0784.35025
[6] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36, 437-477 (1983) · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[7] Chen, W.; Fang, Y.; Yang, R., Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274, 167-198 (2015) · Zbl 1372.35332 · doi:10.1016/j.aim.2014.12.013
[8] Chang, S.; Gonzalez, M., Fractional Laplacian in conformal geometry, Adv. Math., 226, 1410-1432 (2011) · Zbl 1214.26005 · doi:10.1016/j.aim.2010.07.016
[9] Caffarelli, L.; Gidas, B.; Spruck, J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., 42, 271-297 (1989) · Zbl 0702.35085 · doi:10.1002/cpa.3160420304
[10] Cheng, T.; Huang, G.; Li, C., The maximum principles for fractional Laplacian equation and their applications, Commun. Contemp. Math., 19, 1750018 (2017) · Zbl 1373.35330 · doi:10.1142/S0219199717500183
[11] Caffarelli, L.; Jin, T.; Sire, Y.; Xiong, J., Local analysis of solutions of fractional semi-linear elliptic equations with isolated singularities, Arch. Ration. Mech. Anal., 213, 245-268 (2014) · Zbl 1296.35208 · doi:10.1007/s00205-014-0722-4
[12] Chen, W., Li, C.: Methods on Nonlinear Elliptic Equations. AIMS book series on Differential Equations and Dynamical Systems, vol. 4 (2010) · Zbl 1214.35023
[13] Chen, W.; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, 615-622 (1991) · Zbl 0768.35025 · doi:10.1215/S0012-7094-91-06325-8
[14] Chen, W.; Li, C.; Li, Y., A direct method of moving planes for the fractional Laplacian, Adv. Math., 308, 404-437 (2017) · Zbl 1362.35320 · doi:10.1016/j.aim.2016.11.038
[15] Constantin, P.: Euler equations, Navier-Stokes equations and turbulence. In: Mathematical Foundation of Turbulent Viscous Flows, Vol. 1871 of Lecture Notes in Mathmatics, pp. 1-43, Springer, Berlin (2006) · Zbl 1190.76146
[16] Caffarelli, L.; Vasseur, L., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171, 1903-1930 (2010) · Zbl 1204.35063 · doi:10.4007/annals.2010.171.1903
[17] Cabré, X.; Sire, Y., Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. Henri Poincare (C) Non Linear Anal., 31, 23-53 (2014) · Zbl 1286.35248 · doi:10.1016/j.anihpc.2013.02.001
[18] Cabré, X.; Tan, J., Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224, 2052-2093 (2010) · Zbl 1198.35286 · doi:10.1016/j.aim.2010.01.025
[19] Dávila, J.; Dupaigne, L.; Wei, J., On the fractional Lane-Emden equation, Trans. Am. Math. Soc., 369, 6087-6104 (2017) · Zbl 1515.35311 · doi:10.1090/tran/6872
[20] Dai, W.; Liu, Z.; Lu, G., Liouville type theorems for PDE and IE systems involving fractional Laplacian on a half space, Potential Anal., 46, 569-588 (2017) · Zbl 1364.35421 · doi:10.1007/s11118-016-9594-6
[21] Dipierro, S.; Savin, O.; Valdinoci, E., Definition of fractional Laplacian for functions with polynomial growth, Rev. Mat. Iberoam., 35, 1079-1122 (2019) · Zbl 1428.35660 · doi:10.4171/rmi/1079
[22] Jin, T.; Li, Y.; Xiong, J., On a fractional Nirenberg problem, Part II: existence of solutions, Int. Math. Res. Not., 2015, 1555-1589 (2013) · Zbl 1319.53031
[23] Frank, RL; Lenzmann, E., Uniqueness of non-linear ground states for fractional Laplacians in \(R\), Acta Math., 210, 261-318 (2013) · Zbl 1307.35315 · doi:10.1007/s11511-013-0095-9
[24] Fall, M.; Weth, T., Nonexistence results for a class of fractional elliptic boundary values problems, J. Funct. Anal., 263, 2205-2227 (2012) · Zbl 1260.35050 · doi:10.1016/j.jfa.2012.06.018
[25] Gidas, B.; Ni, WM; Nirenberg, L.; Nachbin, L., Symmetry of positive solutions of nonlinear elliptic equations in \(R^n\), Mathematical Analysis and Applications. Part A. Adv. Math. Suppl. Stud., 369-402 (1981), New York: Academic Press, New York · Zbl 0469.35052
[26] Li, Y., Harnack type inequality: the method of moving planes, Commun. Math. Phys., 200, 421-444 (1999) · Zbl 0928.35057 · doi:10.1007/s002200050536
[27] Li, C.; Liu, C.; Wu, Z.; Xu, H., Non-negative solutions to fractional Laplace equations with isolated singularity, Adv. Math., 373, 107329 (2020) · Zbl 1447.35083 · doi:10.1016/j.aim.2020.107329
[28] Li, C., Wu, Z., Xu, H.: Maximum principles and Bôcher type theorems. Proc. Natl. Acad. Sci. USA 201804225 (2018) · Zbl 1440.35343
[29] Li, D.; Zhuo, R., An integral equation on half space, Proc. Am. Math. Soc., 8, 2779-2791 (2010) · Zbl 1200.45001 · doi:10.1090/S0002-9939-10-10368-2
[30] Quaas, A.; Xia, A., Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differ. Equ., 52, 641-659 (2015) · Zbl 1316.35291 · doi:10.1007/s00526-014-0727-8
[31] Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60, 67-112 (2007) · Zbl 1141.49035 · doi:10.1002/cpa.20153
[32] Tarasov, V.; Zaslasvky, G., Fractional dynamics of systems with long-range interaction, Commun. Nonlinear Sci. Numer. Simul., 11, 885-889 (2006) · Zbl 1106.35103 · doi:10.1016/j.cnsns.2006.03.005
[33] Zhuo, R.; Chen, W.; Cui, X.; Yuan, Z., Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36, 1125-1141 (2016) · Zbl 1322.31007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.