×

The occurrence of surface tension gradient discontinuities and zero mobility for Allen-Cahn and curvature flows in periodic media. (English) Zbl 1532.35033

Summary: We construct several examples related to the scaling limits of energy minimizers and gradient flows of surface energy functionals in heterogeneous media. These include both sharp and diffuse interface models. The focus is on two separate but related issues: the regularity of effective surface tensions and the occurrence of zero mobility in the associated gradient flows. On regularity, we build on the 2014 theory of Chambolle, Goldman, and Novaga to show that gradient discontinuities in the surface tension are generic for sharp interface models. In the diffuse interface case, we only show that the laminations by plane-like solutions satisfying the strong Birkhoff property generically are not foliations and do have gaps. On mobility, we construct examples in both the sharp and diffuse interface case where the homogenization scaling limit of the \(L^2\) gradient flow is trivial, that is, there is pinning at every direction. In the sharp interface case, these are related to examples previously constructed for forced mean curvature flow in M. Novaga and E. Valdinoci’s paper [Netw. Heterog. Media 6, No. 1, 77–88 (2011; Zbl 1261.53003)].

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35B65 Smoothness and regularity of solutions to PDEs

Citations:

Zbl 1261.53003

References:

[1] N. Ansini, A. Braides, and V. Chiadò Piat, Gradient theory of phase transitions in composite media. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 2, 265-296 Zbl 1031.49021 MR 1969814 · Zbl 1031.49021 · doi:10.1017/S0308210500002390
[2] S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states. Phys. D 8 (1983), no. 3, 381-422 Zbl 1237.37059 MR 719634 · Zbl 1237.37059 · doi:10.1016/0167-2789(83)90233-6
[3] V. Bangert, A uniqueness theorem for Z n -periodic variational problems. Comment. Math. Helv. 62 (1987), no. 4, 511-531 Zbl 0634.49018 MR 920054 · Zbl 0634.49018 · doi:10.1007/BF02564459
[4] V. Bangert, On minimal laminations of the torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 2, 95-138 Zbl 0678.58014 MR 991874 · Zbl 0678.58014
[5] G. Barles, An introduction to the theory of viscosity solutions for first-order Hamilton-Jacobi equations and applications. In Hamilton-Jacobi equations: approximations, numerical analy-sis and applications, pp. 49-109, Lecture Notes in Math. 2074, Springer, Heidelberg, 2013 Zbl 1269.49043 MR 3135340 · Zbl 1269.49043 · doi:10.1007/978-3-642-36433-4_2
[6] G. Barles, A. Cesaroni, and M. Novaga, Homogenization of fronts in highly heterogeneous media. SIAM J. Math. Anal. 43 (2011), no. 1, 212-227 Zbl 1228.35026 MR 2765689 · Zbl 1228.35026 · doi:10.1137/100800014
[7] G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26 (1988), no. 5, 1133-1148 Zbl 0674.49027 MR 957658 · Zbl 0674.49027 · doi:10.1137/0326063
[8] G. Barles, H. M. Soner, and P. E. Souganidis, Front propagation and phase field theory. SIAM J. Control Optim. 31 (1993), no. 2, 439-469 Zbl 0785.35049 MR 1205984 · Zbl 0785.35049 · doi:10.1137/0331021
[9] G. Barles and P. E. Souganidis, A new approach to front propagation problems: theory and applications. Arch. Rational Mech. Anal. 141 (1998), no. 3, 237-296 Zbl 0904.35034 MR 1617291 · Zbl 0904.35034 · doi:10.1007/s002050050077
[10] G. Bellettini, P. Buttà, and E. Presutti, Sharp interface limits for non-local anisotropic interac-tions. Arch. Ration. Mech. Anal. 159 (2001), no. 2, 109-135 Zbl 0994.82057 MR 1857376 · Zbl 0994.82057 · doi:10.1007/s002050100149
[11] L. A. Caffarelli and A. Córdoba, An elementary regularity theory of minimal surfaces. Differ-ential Integral Equations 6 (1993), no. 1, 1-13 Zbl 0783.35008 MR 1190161 · Zbl 0783.35008
[12] L. A. Caffarelli and R. de la Llave, Planelike minimizers in periodic media. Comm. Pure Appl. Math. 54 (2001), no. 12, 1403-1441 Zbl 1036.49040 MR 1852978 · Zbl 1036.49040 · doi:10.1002/cpa.10008
[13] P. Cardaliaguet, P.-L. Lions, and P. E. Souganidis, A discussion about the homogenization of moving interfaces. J. Math. Pures Appl. (9) 91 (2009), no. 4, 339-363 Zbl 1180.35070 MR 2518002 · Zbl 1180.35070 · doi:10.1016/j.matpur.2009.01.014
[14] A. Chambolle, M. Goldman, and M. Novaga, Plane-like minimizers and differentiability of the stable norm. J. Geom. Anal. 24 (2014), no. 3, 1447-1489 Zbl 1315.35022 MR 3223561 · Zbl 1315.35022 · doi:10.1007/s12220-012-9380-7
[15] R. Choksi, I. Fonseca, J. Lin, and R. Venkatraman, Anisotropic surface tensions for phase transitions in periodic media. 2021, arXiv:2010.05849
[16] L. Courte, P. Dondl, and M. Ortiz, A proof of Taylor scaling for curvature-driven dislocation motion through random arrays of obstacles. Arch. Ration. Mech. Anal. 244 (2022), no. 2, 317-341 Zbl 1487.35187 MR 4408170 · Zbl 1487.35187 · doi:10.1007/s00205-022-01765-5
[17] M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1-67 Zbl 0755.35015 MR 1118699 · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[18] W. Ding, F. Hamel, and X.-Q. Zhao, Transition fronts for periodic bistable reaction-diffusion equations. Calc. Var. Partial Differential Equations 54 (2015), no. 3, 2517-2551 Zbl 1338.35240 MR 3412383 · Zbl 1338.35240 · doi:10.1007/s00526-015-0874-6
[19] N. Dirr, P. W. Dondl, G. R. Grimmett, A. E. Holroyd, and M. Scheutzow, Lipschitz percolation. Electron. Commun. Probab. 15 (2010), 14-21 Zbl 1193.60115 MR 2581044 · Zbl 1193.60115 · doi:10.1214/ECP.v15-1521
[20] N. Dirr, P. W. Dondl, and M. Scheutzow, Pinning of interfaces in random media. Interfaces Free Bound. 13 (2011), no. 3, 411-421 Zbl 1231.35323 MR 2846018 · Zbl 1231.35323 · doi:10.4171/IFB/265
[21] N. Dirr, G. Karali, and N. K. Yip, Pulsating wave for mean curvature flow in inhomogeneous medium. European J. Appl. Math. 19 (2008), no. 6, 661-699 Zbl 1185.53076 MR 2463225 · Zbl 1185.53076 · doi:10.1017/S095679250800764X
[22] N. Dirr and N. K. Yip, Pinning and de-pinning phenomena in front propagation in heteroge-neous media. Interfaces Free Bound. 8 (2006), no. 1, 79-109 Zbl 1101.35074 MR 2231253 · Zbl 1101.35074 · doi:10.4171/IFB/136
[23] P. W. Dondl and M. Scheutzow, Ballistic and sub-ballistic motion of interfaces in a field of random obstacles. Ann. Appl. Probab. 27 (2017), no. 5, 3189-3200 Zbl 1499.60332 MR 3719956 · Zbl 1499.60332 · doi:10.1214/17-AAP1279
[24] A. Einstein, Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der Physik 322 (1905), no. 8, 549-560 Zbl 36.0975.01 · JFM 36.0975.01 · doi:10.1002/andp.19053220806
[25] W. M. Feldman, Limit shapes of local minimizers for the alt-Caffarelli energy functional in inhomogeneous media. Arch. Ration. Mech. Anal. 240 (2021), no. 3, 1255-1322 Zbl 1466.35016 MR 4264946 · Zbl 1466.35016 · doi:10.1007/s00205-021-01635-6
[26] W. M. Feldman and C. K. Smart, A free boundary problem with facets. Arch. Ration. Mech. Anal. 232 (2019), no. 1, 389-435 Zbl 1412.35079 MR 3916978 · Zbl 1412.35079 · doi:10.1007/s00205-018-1323-4
[27] Y. Giga, Surface evolution equations. Monogr. Math. 99, Birkhäuser, Basel, 2006 Zbl 1096.53039 MR 2238463 · doi:10.1007/3-7643-7391-1
[28] H. Ikeda and M. Mimura, Wave-blocking phenomena in bistable reaction-diffusion systems. SIAM J. Appl. Math. 49 (1989), no. 2, 515-538 Zbl 0691.35008 MR 988617 · Zbl 0691.35008 · doi:10.1137/0149030
[29] H. Junginger-Gestrich, A morse type uniqueness theorem for non-parametric minimizing hyper surfaces. Ph.D. thesis, University of Freiburg, 2007 Zbl 1127.53050
[30] H. Junginger-Gestrich and E. Valdinoci, Some connections between results and problems of De Giorgi, Moser and Bangert. Z. Angew. Math. Phys. 60 (2009), no. 3, 393-401 Zbl 1169.35323 MR 2505410 · Zbl 1169.35323 · doi:10.1007/s00033-008-7093-3
[31] M. Kardar, Nonequilibrium dynamics of interfaces and lines. Physics Reports 301 (1998), no. 1, 85-112
[32] R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29 (1966), no. 1, 255-284 Zbl 0163.23102 · Zbl 0163.23102 · doi:10.1088/0034-4885/29/1/306
[33] T. J. Lewis and J. P. Keener, Wave-block in excitable media due to regions of depressed excitability. SIAM J. Appl. Math. 61 (2000), no. 1, 293-316 Zbl 0967.35067 MR 1776397 · Zbl 0967.35067 · doi:10.1137/S0036139998349298
[34] F. Maggi, Sets of finite perimeter and geometric variational problems. Cambridge Stud. Adv. Math. 135, Cambridge University Press, Cambridge, 2012 Zbl 1255.49074 MR 2976521 · Zbl 1255.49074 · doi:10.1017/CBO9781139108133
[35] J. N. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21 (1982), no. 4, 457-467 Zbl 0506.58032 MR 670747 · Zbl 0506.58032 · doi:10.1016/0040-9383(82)90023-4
[36] P. S. Morfe, Homogenization of the Allen-Cahn equation with periodic mobility. Calc. Var. Partial Differential Equations 61 (2022), no. 3, article no. 110 Zbl 1492.35027 MR 4409821 · Zbl 1492.35027 · doi:10.1007/s00526-022-02199-3
[37] P. S. Morfe, A variational principle for pulsating standing waves and an Einstein relation in the sharp interface limit. Arch. Ration. Mech. Anal. 244 (2022), no. 3, 919-1018 Zbl 1491.35229 MR 4419610 · Zbl 1491.35229 · doi:10.1007/s00205-022-01755-7
[38] J. Moser, Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), no. 3, 229-272 Zbl 0609.49029 MR 847308 · Zbl 0609.49029
[39] M. Novaga and E. Valdinoci, Closed curves of prescribed curvature and a pinning effect. Netw. Heterog. Media 6 (2011), no. 1, 77-88 Zbl 1261.53003 MR 2777010 · Zbl 1261.53003 · doi:10.3934/nhm.2011.6.77
[40] R. P. Pacheco and R. O. Ruggiero, On C 1;ˇd ensity of metrics without invariant graphs. Dis-crete Contin. Dyn. Syst. 38 (2018), no. 1, 247-261 Zbl 1387.37049 MR 3708160 · Zbl 1387.37049 · doi:10.3934/dcds.2018012
[41] P. H. Rabinowitz and E. W. Stredulinsky, Extensions of Moser-Bangert theory. Progr. Nonlin-ear Differential Equations Appl. 81, Birkhäuser, New York, 2011 Zbl 1234.35005 MR 2809349 · Zbl 1234.35005 · doi:10.1007/978-0-8176-8117-3
[42] R. O. Ruggiero, The set of smooth metrics in the torus without continuous invariant graphs is open and dense in the C 1 topology. Bull. Braz. Math. Soc. (N.S.) 35 (2004), no. 3, 377-385 Zbl 1096.37034 MR 2106311 · Zbl 1096.37034 · doi:10.1007/s00574-004-0020-0
[43] L. Simon, A strict maximum principle for area minimizing hypersurfaces. J. Differential Geom. 26 (1987), no. 2, 327-335 Zbl 0625.53052 MR 906394 · Zbl 0625.53052 · doi:10.4310/jdg/1214441373.full
[44] H. Spohn, Interface motion in models with stochastic dynamics. J. Statist. Phys. 71 (1993), no. 5-6, 1081-1132 Zbl 0935.82546 MR 1226387 · Zbl 0935.82546 · doi:10.1007/BF01049962
[45] J. X. Xin, Existence and nonexistence of traveling waves and reaction-diffusion front propa-gation in periodic media. J. Statist. Phys. 73 (1993), no. 5-6, 893-926 Zbl 1102.35340 MR 1251222 · Zbl 1102.35340 · doi:10.1007/BF01052815
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.