\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Closed curves of prescribed curvature and a pinning effect

Abstract / Introduction Related Papers Cited by
  • We prove that for any $H: R^2 \to R$ which is $Z^2$-periodic, there exists $H_\varepsilon$, which is smooth, $\varepsilon$-close to $H$ in $L^1$, with $L^\infty$-norm controlled by the one of $H$, and with the same average of $H$, for which there exists a smooth closed curve $\gamma_\varepsilon$ whose curvature is $H_\varepsilon$. A pinning phenomenon for curvature driven flow with a periodic forcing term then follows. Namely, curves in fine periodic media may be moved only by small amounts, of the order of the period.
    Mathematics Subject Classification: Primary: 53A10, 34B15; Secondary: 58E99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. A. Caffarelli and R. de la Llave, Planelike minimizers in periodic media, Comm. Pure Appl. Math., 54 (2001), 1403-1441.doi: 10.1002/cpa.10008.

    [2]

    A. Chambolle and G. Thouroude, Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem, Netw. Heterog. Media, 4 (2009), 127-152.doi: 10.3934/nhm.2009.4.127.

    [3]

    N. Dirr, M. Lucia and M. Novaga, $\Gamma$-convergence of the Allen-Cahn energy with an oscillating forcing term, Interfaces and Free Boundaries, 8 (2006), 47-78.doi: 10.4171/IFB/135.

    [4]

    N. Dirr and N. K. Yip, Pinning and de-pinning phenomena in front propagation in heterogeneous media, Interfaces Free Bound., 8 (2006), 79-109.doi: 10.4171/IFB/136.

    [5]

    K. Ecker, "Regularity Theory for Mean Curvature Flow," Progress in Nonlinear Differential Equations and their Applications, 57. Birkhäuser Boston Inc., Boston, MA, 2004.

    [6]

    K. Ecker and G. Huisken, Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes, Comm. Math. Phys., 135 (1991), 595-613.doi: i:10.1007/BF02104123.

    [7]

    M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96.

    [8]

    E. Giusti, "Minimal Surfaces and Functions of Bounded Variation," volume 80 of "Monographs in Mathematics," Birkhäuser Verlag, Basel, 1984.

    [9]

    M. Novaga and E. Valdinoci, The geometry of mesoscopic phase transition interfaces, Discrete Contin. Dyn. Syst., 19 (2007), 777-798.doi: 10.3934/dcds.2007.19.777.

    [10]

    E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.doi: 10.1002/cpa.20046.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return