×

Semi-analytical estimates for the chaotic diffusion in the second fundamental model of resonance. Application to Earth’s navigation satellites. (English) Zbl 1531.37079

Summary: We discuss the applicability of the Melnikov and Landau-Teller theories in obtaining semi-analytical estimates of the speed of chaotic diffusion in systems driven by the separatrix-like stochastic layers of a resonance belonging to the ‘second fundamental model’ (SFM) [J. Henrard and A. Lemaitre, Celest. Mech. 30, 197–218 (1983; Zbl 0513.70012)]. Stemming from the analytic solution for the SFM in terms of Weierstrass elliptic functions, we introduce stochastic Melnikov and Landau-Teller models allowing to locally approximate chaotic diffusion as a sequence of uncorrelated ‘jumps’ observed in the time series yielding the slow evolution of an ensemble of trajectories in the space of the adiabatic actions of the system. Such jumps occur in steps of one per homoclinic loop. We show how a semi-analytical determination of the probability distribution of the size of the jumps can be arrived at by the Melnikov and Landau-Teller approximate theories. Computing also the mean time required per homoclinic loop, we arrive at estimates of the chaotic diffusion coefficient in such systems. As a concrete example, we refer to the long-term diffusion of a small object (e.g. Earth navigation satellite or space debris) within the chaotic layers of the so-called \(2g + h\) lunisolar resonance, which is of the SFM type. After a suitable normal form reduction of the Hamiltonian, we compute estimates of the speed of diffusion of these objects, which compare well with the results of numerical experiments.

MSC:

37N05 Dynamical systems in classical and celestial mechanics
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
70F15 Celestial mechanics
70M20 Orbital mechanics
70H08 Nearly integrable Hamiltonian systems, KAM theory

Citations:

Zbl 0513.70012

References:

[1] Henrard, J.; Lemaitre, A., A second fundamental model for resonance. Celest. Mech., 2, 197-218 (1983) · Zbl 0513.70012
[2] Efthymiopoulos, C.; Paez, R. I., Arnold diffusion and Nekhoroshev theory, 163-207
[3] Chirikov, B. V., A universal instability of many-dimensional oscillator systems. Phys. Rep., 5, 263-379 (1979)
[4] Chierchia, L.; Gallavotti, G., Drift and diffusion in phase space, 1-144 · Zbl 1010.37039
[5] Delshams, A.; de la Llave, R.; Seara, T. M., A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem: Heuristics and Rigorous Verification on a Model: Heuristics and Rigorous Verification on a Model (2006), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 1090.37044
[6] Delshams, A.; De La Llave, R.; Seara, T. M., Geometric properties of the scattering map of a normally hyperbolic invariant manifold. Adv. Math., 3, 1096-1153 (2008) · Zbl 1131.37032
[7] Guzzo, M.; Efthymiopoulos, C.; Paez, R. I., Semi-analytic computations of the speed of Arnold diffusion along single resonances in a priori stable Hamiltonian systems. J. Nonlinear Sci., 3, 851-901 (2020) · Zbl 1443.37047
[8] Arnold, V. I., Instability of dynamical systems with several degrees of freedom. Dokl. Akad. Nauk SSSR, 9-12 (1964)
[9] Landau, L.; Teller, E., On the theory of sound dispersion. Phys. Z. der Sowjetunion, 34-38 (1936)
[10] Jeans, J., On the vibrations set up in molecules by collisions. London, Edinb., Dublin Philos. Mag. J. Sci., 32, 279-286 (1903) · JFM 34.0833.02
[11] Jeans, J., On the partition of energy between matter and æther. London, Edinb., Dublin Philos. Mag. J. Sci., 55, 91-98 (1905) · JFM 36.0842.01
[12] Rapp, D., Complete classical theory of vibrational energy exchange. J. Chem. Phys., 3, 735-737 (1960)
[13] Benettin, G.; Carati, A.; Sempio, P., On the Landau-Teller approximation for energy exchanges with fast degrees of freedom. J. Stat. Phys., 1, 175-192 (1993) · Zbl 1101.82351
[14] Benettin, G.; Carati, A.; Fasso, F., On the conservation of adiabatic invariants for a system of coupled rotators. Physica D, 3-4, 253-268 (1997) · Zbl 0896.58055
[15] Rosengren, A. J.; Alessi, E. M.; Rossi, A.; Valsecchi, G. B., Chaos in navigation satellite orbits caused by the perturbed motion of the moon. Mon. Not. R. Astron. Soc., 4, 3522-3526 (2015)
[16] Daquin, J.; Rosengren, A. J.; Alessi, E. M.; Deleflie, F.; Valsecchi, G. B.; Rossi, A., The dynamical structure of the MEO region: Long-term stability, chaos, and transport. Celestial Mech. Dynam. Astronom., 4, 335-366 (2016) · Zbl 1336.70040
[17] Celletti, A.; Galeş, C. B., A study of the lunisolar secular resonance \(2 \dot{\omega} + \dot{\Omega} = 0\). Front. Astron. Space Sci., 11 (2016)
[18] Gkolias, I.; Daquin, J.; Gachet, F.; Rosengren, A. J., From order to chaos in Earth satellite orbits. Astron. J., 5, 119 (2016)
[19] Rossi, A.; Colombo, C.; Tsiganis, K.; Beck, J.; Rodriguez, J. B.; Walker, S.; Letterio, F.; Dalla Vedova, F.; Schaus, V.; Popova, R., ReDSHIFT: A global approach to space debris mitigation. Aerospace, 2, 64 (2018)
[20] Celletti, A.; Galeş, C.; Pucacco, G.; Rosengren, A. J., Analytical development of the lunisolar disturbing function and the critical inclination secular resonance. Celestial Mech. Dynam. Astronom., 3, 259-283 (2017) · Zbl 1374.70029
[21] Daquin, J.; Legnaro, E.; Gkolias, I.; Efthymiopoulos, C., A deep dive into the \(2 g + h\) resonance: Sseparatrices, manifolds and phase space structure of navigation satellites. Celestial Mech. Dynam. Astronom., 1, 1-31 (2022) · Zbl 1482.70024
[22] Legnaro, E.; Efthymiopoulos, C., A detailed dynamical model for inclination-only dependent lunisolar resonances. Effect on the “eccentricity growth” mechanism. Adv. Space Res. (2022), S0273117722006871
[23] Efthymiopoulos, C.; Contopoulos, G.; Voglis, N.; Dvorak, R., Stickiness and cantori. J. Phys. A: Math. Gen., 23, 8167 (1997) · Zbl 0948.37043
[24] Contopoulos, G.; Harsoula, M.; Voglis, N.; Dvorak, R., Destruction of islands of stability. J. Phys. A: Math. Gen., 28, 5213 (1999) · Zbl 0989.37057
[25] Contopoulos, G.; Harsoula, M., Stickiness in chaos. Int. J. Bifurcation Chaos, 10, 2929-2949 (2008)
[26] Contopoulos, G.; Harsoula, M., Stickiness effects in conservative systems. Int. J. Bifurcation Chaos, 07, 2005-2043 (2010) · Zbl 1196.37100
[27] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions ; With an Account of the Principal Transcendental Functions. Cambridge mathematical library (2006), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[28] Cincotta, P. M., Arnold diffusion: An overview through dynamical astronomy. New Astron. Rev., 1, 13-39 (2002)
[29] Cincotta, P. M.; Efthymiopoulos, C.; Giordano, C. M.; Mestre, M. F., Chirikov and nekhoroshev diffusion estimates: Bridging the two sides of the river. Physica D, 49-64 (2014) · Zbl 1286.37059
[30] Cincotta, P. M.; Giordano, C. M., Estimation of diffusion time with the Shannon entropy approach. Phys. Rev. E, 6 (2023)
[31] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes 3rd Edition: The Art of Scientific Computing (2007), Cambridge University Press: Cambridge University Press New York · Zbl 1132.65001
[32] Gondelach, D. J.; Armellin, R.; Wittig, A., On the predictability and robustness of Galileo disposal orbits. Celestial Mech. Dynam. Astronom., 12, 60 (2019) · Zbl 1451.70044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.