×

A deep dive into the \(2g+h\) resonance: separatrices, manifolds and phase space structure of navigation satellites. (English) Zbl 1482.70024

Summary: Despite extended past studies, several questions regarding the resonant structure of the medium-Earth orbit (MEO) region remain hitherto unanswered. This work describes in depth the effects of the \(2g+h\) lunisolar resonance. In particular, (i) we compute the correct forms of the separatrices of the resonance in the inclination-eccentricity \((i, e)\) space for fixed semi-major axis \(a\). This allows to compute the change in the width of the \(2g+h\) resonance as the altitude increases. (ii) We discuss the crucial role played by the value of the inclination of the Laplace plane, \(i_L\). Since \(i_L\) is comparable to the resonance’s separatrix width, the parametrization of all resonance bifurcations has to be done in terms of the proper inclination \(i_p\), instead of the mean one. (iii) The subset of circular orbits constitutes an invariant subspace embedded in the full phase space, the center manifold \(\mathcal{C}\), where actual navigation satellites lie. Using \(i_p\) as a label, we compute its range of values for which \(\mathcal{C}\) becomes a normally hyperbolic invariant manifold (NHIM). The structure of invariant tori in \(\mathcal{C}\) allows to explain the role of the initial phase \(h\) noticed in several works. (iv) Through Fast Lyapunov Indicator (FLI) cartography, we portray the stable and unstable manifolds of the NHIM as the altitude increases. Manifold oscillations dominate in phase space between \(a = 24,000\) km and \(a= 30,000\) km as a result of the sweeping of the \(2g+h\) resonance by the \(h-\Omega_{(\!|}\) and \(2h-\Omega_{(\!|}\) resonances. The noticeable effects of the latter are explained as a consequence of the relative inclination of the Moon’s orbit with respect to the ecliptic. The role of the phases \((h, \Omega_{(\!|})\) in the structures observed in the FLI maps is also clarified. Finally, (v) we discuss how the understanding of the manifold dynamics could inspire end-of-life disposal strategies.

MSC:

70M20 Orbital mechanics
70K28 Parametric resonances for nonlinear problems in mechanics

References:

[1] Aguirre, J.; Vallejo, JC; Sanjuán, MA, Wada basins and chaotic invariant sets in the Hénon-Heiles system, Phys. Rev. E, 64, 6, 066208 (2001) · doi:10.1103/PhysRevE.64.066208
[2] Alessi, E.; Deleflie, F.; Rosengren, A.; Rossi, A.; Valsecchi, G.; Daquin, J., A numerical investigation on the eccentricity growth of GNSS disposal orbits, Celest. Mech. Dyn. Astron., 125, 1, 71-90 (2016) · doi:10.1007/s10569-016-9673-4
[3] Armellin, R., San-Juan, J.F.: Optimal Earth’s reentry disposal of the Galileo constellation. Adv. Space Res. 61(4), 1097-1120 (2018)
[4] Bleher, S.; Grebogi, C.; Ott, E.; Brown, R., Fractal boundaries for exit in Hamiltonian dynamics, Phys. Rev. A, 38, 930-938 (1988) · doi:10.1103/PhysRevA.38.930
[5] Breiter, S., Lunisolar resonances revisited, Celest. Mech. Dyn. Astron., 81, 81-91 (2001) · Zbl 1043.70009 · doi:10.1023/A:1013363221377
[6] Celletti, A.; Gales, C., A study of the lunisolar secular resonance \(2 {\dot{\omega }} +{\dot{\Omega }}= 0\), Front. Astron. Space Sci., 3, 11 (2016) · doi:10.3389/fspas
[7] Celletti, A.; Gales, C.; Pucacco, G., Bifurcation of lunisolar secular resonances for space debris orbits, SIAM J. Appl. Dyn. Syst., 15, 3, 1352-1383 (2016) · Zbl 1353.37158 · doi:10.1137/15M1042632
[8] Chao, C.; Gick, R., Long-term evolution of navigation satellite orbits: GPS/GLONASS/GALILEO, Adv. Space Res., 34, 5, 1221-1226 (2004) · doi:10.1016/j.asr.2003.01.021
[9] Chirikov, B., A universal instability of many-dimensional oscillator systems, Phys. Rep., 52, 5, 263-379 (1979) · doi:10.1016/0370-1573(79)90023-1
[10] Cook, G., Lunisolar perturbations of the orbit of an Earth satellite, Geophys. J. R. Astron. Soc., 6, 3, 271 (1962) · Zbl 0101.42104 · doi:10.1111/j.1365-246X.1962.tb00351.x
[11] Daquin, J.; Rosengren, A.; Alessi, E.; Deleflie, F.; Valsecchi, G.; Rossi, A., The dynamical structure of the MEO region: long-term stability, chaos, and transport, Celest. Mech. Dyn. Astron., 124, 4, 335-366 (2016) · Zbl 1336.70040 · doi:10.1007/s10569-015-9665-9
[12] Dvorak, R., Contopoulos, G., Efthymiopoulos, C., Voglis, N.: “Stickiness” in mappings and dynamical systems. Planet. Space Sci. 46(11-12), 1567-1578 (1998)
[13] Efthymiopoulos, C.: Canonical perturbation theory; stability and diffusion in Hamiltonian systems: applications in dynamical astronomy. In: Workshop series of the asociacion argentina de astronomia, vol. 3, pp. 3-146 (2012)
[14] Ely, T.: Dynamics and control of artificial satellite orbits with multiple tesseral resonances. Ph.D Thesis, Purdue University (1996)
[15] Froeschlé, C.; Guzzo, M.; Lega, E., Graphical evolution of the Arnold web: from order to chaos, Science, 289, 5487, 2108-2110 (2000) · doi:10.1126/science.289.5487.2108
[16] Gkolias, I.; Daquin, J.; Gachet, F.; Rosengren, AJ, From order to chaos in Earth satellite orbits, Astron. J., 152, 5, 119 (2016) · doi:10.3847/0004-6256/152/5/119
[17] Gkolias, I.; Daquin, J.; Skoulidou, DK; Tsiganis, K.; Efthymiopoulos, C., Chaotic transport of navigation satellites, Chaos Interdiscip. J. Nonlinear Sci., 29, 10, 101106 (2019) · doi:10.1063/1.5124682
[18] Guzzo, M., Lega, E., Froeschlé, C.: A numerical study of the topology of hyperbolic manifolds supporting Arnold diffusion in a priori unstable systems (2009) · Zbl 1228.37042
[19] Henrard, J.; Lemaitre, A., A second fundamental model for resonance, Celest. Mech., 30, 2, 197-218 (1983) · Zbl 0513.70012 · doi:10.1007/BF01234306
[20] Hughes, S., Earth satellite orbits with resonant lunisolar perturbations i. Resonances dependent only on inclination, Proc. R. Soc. Lond. A Math. Phys. Sci., 372, 1749, 243-264 (1980)
[21] Kaula, W.M.: Theory of Satellite Geodesy: Applications of Satellites to Geodesy. Blaisdell Publi. CO. (1966) · Zbl 0973.86001
[22] Kozai, Y., Secular perturbations of asteroids with high inclination and eccentricity, Astron. J., 67, 591-598 (1962) · doi:10.1086/108790
[23] Kudielka, V.W.: Equilibria bifurcations of satellite orbits. In: The Dynamical Behaviour of Our Planetary System, pp. 243-255. Springer (1997)
[24] Lara, M.: Hamiltonian Perturbation Solutions for Spacecraft Orbit Prediction: The Method of Lie Transforms, vol. 54. Walter de Gruyter GmbH & Co KG (2021) · Zbl 1507.70001
[25] Lara, M.; San-Juan, JF; López-Ochoa, LM; Cefola, P., Long-term evolution of galileo operational orbits by canonical perturbation theory, Acta Astronaut., 94, 2, 646-655 (2014) · doi:10.1016/j.actaastro.2013.09.008
[26] Lega, E., Guzzo, M., Froeschlé, C.: Theory and applications of the fast Lyapunov indicator (FLI) method. In: Chaos Detection and Predictability, pp. 35-54. Springer (2016)
[27] Legnaro, E., Efthymiopoulos, C.: Inclination-dependent lunisolar resonances in the medium-earth orbit region. In: Preparation (2021)
[28] Lemaître, A., High-order resonances in the restricted three-body problem, Celest. Mech., 32, 2, 109-126 (1984) · Zbl 0591.70025 · doi:10.1007/BF01231119
[29] Lidov, M., The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies, Planet. Space Sci., 9, 10, 719-759 (1962) · doi:10.1016/0032-0633(62)90129-0
[30] Nagler, J., Crash test for the restricted three-body problem, Phys. Rev. E, 71, 026227 (2005) · doi:10.1103/PhysRevE.71.026227
[31] Rosengren, AJ; Alessi, EM; Rossi, A.; Valsecchi, GB, Chaos in navigation satellite orbits caused by the perturbed motion of the Moon, Mon. Not. R. Astron. Soc., 449, 4, 3522-3526 (2015) · doi:10.1093/mnras/stv534
[32] Rosengren, AJ; Daquin, J.; Tsiganis, K.; Alessi, EM; Deleflie, F.; Rossi, A., Galileo disposal strategy: stability, chaos and predictability, Mon. Not. R. Astron. Soc., 464, 4, 4063-4076 (2017) · doi:10.1093/mnras/stw2459
[33] Rosengren, AJ; Skoulidou, DK; Tsiganis, K.; Voyatzis, G., Dynamical cartography of Earth satellite orbits, Adv. Space Res., 63, 1, 443-460 (2019) · doi:10.1016/j.asr.2018.09.004
[34] Rossi, A., Resonant dynamics of Medium Earth Orbits: space debris issues, Celest. Mech. Dyn. Astron., 100, 4, 267-286 (2008) · Zbl 1254.70041 · doi:10.1007/s10569-008-9121-1
[35] Stefanelli, L.; Metris, G., Solar gravitational perturbations on the dynamics of MEO: increase of the eccentricity due to resonances, Adv. Space Res., 55, 7, 1855-1867 (2015) · doi:10.1016/j.asr.2015.01.015
[36] Tremaine, S.; Touma, J.; Namouni, F., Satellite dynamics on the Laplace surface, Astron. J., 137, 3, 3706 (2009) · doi:10.1088/0004-6256/137/3/3706
[37] Wiggins, S.: Normally Hyperbolic Invariant Manifolds in Dynamical Systems, vol. 105. Springer (2013) · Zbl 0812.58001
[38] Zaslavsky, GM, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371, 6, 461-580 (2002) · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.