×

Perturbations of parabolic equations and diffusion processes with degeneration: boundary problems, metastability, and homogenization. (English) Zbl 1531.35036

Summary: We study diffusion processes that are stopped or reflected on the boundary of a domain. The generator of the process is assumed to contain two parts: the main part that degenerates on the boundary in a direction orthogonal to the boundary and a small nondegenerate perturbation. The behavior of such processes determines the stabilization of solutions to the corresponding parabolic equations with a small parameter. Metastability effects arise in this case: the asymptotics of solutions, as the size of the perturbation tends to zero, depends on the time scale. Initial-boundary value problems with both the Dirichlet and the Neumann boundary conditions are considered. We also consider periodic homogenization for operators with degeneration.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35B40 Asymptotic behavior of solutions to PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K65 Degenerate parabolic equations
35R60 PDEs with randomness, stochastic partial differential equations
60F10 Large deviations
60J60 Diffusion processes

References:

[1] Bakhtin, Y. (2011). Noisy heteroclinic networks. Probab. Theory Related Fields 150 1-42. Digital Object Identifier: 10.1007/s00440-010-0264-0 Google Scholar: Lookup Link MathSciNet: MR2800902 · Zbl 1231.34100 · doi:10.1007/s00440-010-0264-0
[2] BAKHTIN, Y., CHEN, H.-B. and PAJOR-GYULAI, Z. (2022). Rare transitions in noisy heteroclinic networks. Preprint. Available at arXiv:2205.00326.
[3] BETZ, V. and LE ROUX, S. (2016). Multi-scale metastable dynamics and the asymptotic stationary distribution of perturbed Markov chains. Stochastic Process. Appl. 126 3499-3526. Digital Object Identifier: 10.1016/j.spa.2016.05.003 Google Scholar: Lookup Link MathSciNet: MR3549716 · Zbl 1348.60107 · doi:10.1016/j.spa.2016.05.003
[4] DAY, M. V. (1987). Recent progress on the small parameter exit problem. Stochastics 20 121-150. Digital Object Identifier: 10.1080/17442508708833440 Google Scholar: Lookup Link MathSciNet: MR0877726 MathSciNet: MR877726 · Zbl 0612.60067 · doi:10.1080/17442508708833440
[5] DAY, M. V. (1989). Boundary local time and small parameter exit problems with characteristic boundaries. SIAM J. Math. Anal. 20 222-248. Digital Object Identifier: 10.1137/0520018 Google Scholar: Lookup Link MathSciNet: MR0977501 MathSciNet: MR977501 · Zbl 0677.60060 · doi:10.1137/0520018
[6] DAY, M. V. (1999). Mathematical approaches to the problem of noise-induced exit. In Stochastic Analysis, Control, Optimization and Applications. Systems Control Found. Appl. 269-287. Birkhäuser, Boston, MA. MathSciNet: MR1702965 · Zbl 0922.60051
[7] FICHERA, G. (1963). On a unified theory of boundary value problems for elliptic-parabolic equations of second order. Matematika 7 99-122. · Zbl 0126.31102
[8] Freidlin, M. (1985). Functional Integration and Partial Differential Equations. Annals of Mathematics Studies 109. Princeton Univ. Press, Princeton, NJ. Digital Object Identifier: 10.1515/9781400881598 Google Scholar: Lookup Link MathSciNet: MR0833742 · Zbl 0568.60057 · doi:10.1515/9781400881598
[9] FREIDLIN, M. and KORALOV, L. (2017). Metastable distributions of Markov chains with rare transitions. J. Stat. Phys. 167 1355-1375. Digital Object Identifier: 10.1007/s10955-017-1777-z Google Scholar: Lookup Link MathSciNet: MR3652517 · Zbl 1379.37006 · doi:10.1007/s10955-017-1777-z
[10] FREIDLIN, M. and KORALOV, L. (2022). Asymptotics in the Dirichlet problem for second order elliptic equations with degeneration on the boundary. J. Differ. Equ. 332 202-218. Digital Object Identifier: 10.1016/j.jde.2022.05.029 Google Scholar: Lookup Link MathSciNet: MR4437713 · Zbl 1492.35104 · doi:10.1016/j.jde.2022.05.029
[11] FREIDLIN, M. I. (2022). Long-time influence of small perturbations and motion on the simplex of invariant probability measures. Pure Appl. Funct. Anal. 7 551-592. MathSciNet: MR4443194 · Zbl 1491.60140
[12] Freidlin, M. I. and Wentzell, A. D. (2012). Random Perturbations of Dynamical Systems, 3rd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 260. Springer, Heidelberg. Digital Object Identifier: 10.1007/978-3-642-25847-3 Google Scholar: Lookup Link MathSciNet: MR2953753 · Zbl 1267.60004 · doi:10.1007/978-3-642-25847-3
[13] HAS’MINSKIĬ, R. Z. (1958). Diffusion processes and elliptic equations degenerating at the boundary of a region. Teor. Veroyatn. Primen. 3 430-451. MathSciNet: MR0101559
[14] HAS’MINSKIĬ, R. Z. (1963). The averaging principle for parabolic and elliptic differential equations and Markov processes with small diffusion. Teor. Veroyatn. Primen. 8 3-25. MathSciNet: MR0161044 · Zbl 0211.20701
[15] KATO, T. (1995). Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin. MathSciNet: MR1335452 · Zbl 0836.47009
[16] LANDIM, C. and XU, T. (2016). Metastability of finite state Markov chains: A recursive procedure to identify slow variables for model reduction. ALEA Lat. Am. J. Probab. Math. Stat. 13 725-751. MathSciNet: MR3536686 · Zbl 1346.60125
[17] MATKOWSKY, B. J. and SCHUSS, Z. (1977). The exit problem for randomly perturbed dynamical systems. SIAM J. Appl. Math. 33 365-382. Digital Object Identifier: 10.1137/0133024 Google Scholar: Lookup Link MathSciNet: MR0451427 · Zbl 0369.60071 · doi:10.1137/0133024
[18] Pinsky, R. G. (1995). Positive Harmonic Functions and Diffusion. Cambridge Studies in Advanced Mathematics 45. Cambridge Univ. Press, Cambridge. Digital Object Identifier: 10.1017/CBO9780511526244 Google Scholar: Lookup Link MathSciNet: MR1326606 · doi:10.1017/CBO9780511526244
[19] RADKEVICH, E. V. (2008). Equations with nonnegative characteristics form. I. J. Math. Sci. (N. Y.) 158 297-452. · Zbl 1200.35158
[20] RADKEVICH, E. V. (2008). Equations with nonnegative characteristic form. II. J. Math. Sci. (N. Y.) 158 453-604. · Zbl 1200.35157
[21] VAĬNBERG, B. R. and GRUŠIN, V. V. (1967). Uniformly nonelliptic problems. II. Mat. Sb. (N.S.) 73 (115) 126-154. MathSciNet: MR0217463
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.