×

Metastable distributions of Markov chains with rare transitions. (English) Zbl 1379.37006

Authors’ abstract: In this paper we consider Markov chains \(X_{t}^{\varepsilon }\) with transition rates that depend on a small parameter \(\varepsilon \). We are interested in the long time behavior of \( X_{t}^{\varepsilon }\) at various \(\varepsilon \)-dependent time scales \( t=t(\varepsilon )\). The asymptotic behavior depends on how the point \( (1/\varepsilon ,t(\varepsilon ))\) approaches infinity. We introduce a general notion of complete asymptotic regularity (a certain asymptotic relation between the ratios of transition rates), which ensures the existence of the metastable distribution for each initial point and a given time scale \(t(\varepsilon )\). The technique of i-graphs allows one to describe the metastable distribution explicitly. The result may be viewed as a generalization of the ergodic theorem to the case of parameter-dependent Markov chains.

MSC:

37A25 Ergodicity, mixing, rates of mixing
37A30 Ergodic theorems, spectral theory, Markov operators
60J27 Continuous-time Markov processes on discrete state spaces
60J28 Applications of continuous-time Markov processes on discrete state spaces
60F10 Large deviations

References:

[1] Aldous, D., Brown, M.: Inequalities for rare events in time-reversible Markov chains. I. Stochastic inequalities (Seattle, WA, 1991), 1-16, IMS Lecture Notes Monogr. Ser., 22, Inst. Math. Statist., Hayward, CA (1992) · Zbl 1400.60096
[2] Aldous, D., Brown, M.: Inequalities for rare events in time-reversible Markov chains II. Stoch. Process. Appl. 44(1), 15-25 (1993) · Zbl 0812.60054 · doi:10.1016/0304-4149(93)90035-3
[3] Bakhtin, Y., Pajor-Gyulai, Z.: Metastability and cycle structure in strictly attracting noisy heteroclinic networks (in preparation) · Zbl 1415.60060
[4] Beltran, J., Landim, C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140(6), 1065-1114 (2010) · Zbl 1223.60061 · doi:10.1007/s10955-010-0030-9
[5] Beltran, J., Landim, C.: A martingale approach to metastability. Probab. Theory Relat. Fields 161(1-2), 267-307 (2015) · Zbl 1338.60194 · doi:10.1007/s00440-014-0549-9
[6] Berglund, N., Gentz, B.: The Eyring-Kramers law for potentials with nonquadratic saddles. Markov Process. Relat. Fields 16(3), 549-598 (2010) · Zbl 1234.60076
[7] Betz, V., Le Roux, S.: Multi-scale metastable dynamics and the asymptotic stationary distribution of perturbed Markov chains. Stoch. Process. Appl. 126(11), 3499-3526 (2016) · Zbl 1348.60107 · doi:10.1016/j.spa.2016.05.003
[8] Bianchi, A., Gaudilliere, A.: Metastable states, quasi-stationary distributions and soft measures. Stoch. Process. Appl. 126(6), 1622-1680 (2016) · Zbl 1348.82060 · doi:10.1016/j.spa.2015.11.015
[9] Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in stochastic dynamics of disordered meanfield models. Probab. Theory Relat. Fields 119(1), 99-161 (2001) · Zbl 1012.82015 · doi:10.1007/PL00012740
[10] Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6(4), 399-424 (2004) · Zbl 1076.82045 · doi:10.4171/JEMS/14
[11] Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and low lying spectra in reversible Markov chains. Commun. Math. Phys. 228, 219-255 (2002) · Zbl 1010.60088 · doi:10.1007/s002200200609
[12] Bovier, A., den Hollander, F.: Metastability. A Potential-Theoretical Approach. Springer, New York (2015) · Zbl 1339.60002
[13] Catoni O.: Simulated annealing algorithms and Markov chains with rare transitions. In: Seminaire de Probabilites, XXXIII, volume 1709 of Lecture Notes in Math., pp. 69-119. Springer, Berlin (1999) · Zbl 0944.90053
[14] Catoni, O., Cerf, R.: The exit path of a Markov chain with rare transitions. ESAIM Probab. Stat. 1: 95-144 (1995/1997) · Zbl 0869.60063
[15] Cirillo, E., Nardi, F.: Metastability for a stochastic dynamics with a parallel heat bath updating rule. J. Stat. Phys. 110(1-2), 183-217 (2003) · Zbl 1035.82029 · doi:10.1023/A:1021070712382
[16] Cirillo, E., Nardi, F.: Relaxation height in energy landscapes: an application to multiple metastable states. J. Stat. Phys. 150(6), 1080-1114 (2013) · Zbl 1273.82009 · doi:10.1007/s10955-013-0717-9
[17] Cirillo, E., Nardi, F., Sohier, J.: Metastability for general dynamics with rare transitions: escape time and critical configurations. J. Stat. Phys. 161, 365-403 (2015) · Zbl 1327.82058 · doi:10.1007/s10955-015-1334-6
[18] Doob, J.L.: Stochastic Processes. Wiley-Interscience. Revised edition (January 25, 1990) · Zbl 1308.60071
[19] Eckhoff, M.: Precise asymptotics of small eigenvalues of reversible diffusions in the metastable regime. Ann. Prob. 33(1), 244-299 (2005) · Zbl 1098.60079 · doi:10.1214/009117904000000991
[20] Fernandez, R., Manzo, F., Nardi, F., Scoppola, E.: Asymptotically exponential hitting times and metastability: a pathwise approach without reversibility. Electron. J. Probab. 20(122), 1-37 (2015) · Zbl 1329.60269
[21] Fernandez, R., Manzo, F., Nardi, F., Scoppola, E., Sohier, J.: Conditioned, quasi-stationary restricted measures and escape from metastable states. Ann. Appl. Prob. 26, 760-793 (2016) · Zbl 1339.60110 · doi:10.1214/15-AAP1102
[22] Freidlin, M.I.: Sublimiting distributions and stabilization of solutions of parabolic equations with a small parameter. Soviet Math. Dokl. 18(4), 1114-1118 (1977) · Zbl 0381.35006
[23] Freidlin, M.I.: On stochastic perturbations of systems with rough symmetry. Hierarchy of Markov chains. J. Stat. Phys. 157(6), 1031-1045 (2014) · Zbl 1308.60071 · doi:10.1007/s10955-014-1110-z
[24] Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, 3rd edn. Springer, Berlin (2012) · Zbl 1267.60004 · doi:10.1007/978-3-642-25847-3
[25] Freidlin, M.I., Koralov, L., Wentzell, A.D.: On the behavior of diffusion processes with traps. To appear in Annals of Probability · Zbl 1411.60042
[26] Hennion, H., Herve, L.: Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Springer, Berlin (2001) · Zbl 0983.60005 · doi:10.1007/b87874
[27] Holmes-Cerfon, M., Gortler, S.J., Brenner, M.P.: A geometrical approach to computing free-energy landscapes from short-ranged potentials. Proc. Natl. Acad. Sci. 110(1), E5-E14 (2013) · doi:10.1073/pnas.1211720110
[28] Huang, C., Sheu, S.: Singular perturbed Markov chains and exact behaviors of simulated annealing processes. J. Theor. Probab. 5(2), 223-249 (1992) · Zbl 0755.60047 · doi:10.1007/BF01046734
[29] Manzo, F., Nardi, F.R., Olivieri, E., Scoppola, E.: On the essential features of metastability: tunneling time and critical configurations. J. Stat. Phys. 115(1/2), 591-642 (2004) · Zbl 1157.82381 · doi:10.1023/B:JOSS.0000019822.45867.ec
[30] Olivieri, E., Scoppola, E.: Markov chains with exponentially small transition probabilities: first exit problem from a general domain. I. The reversible case. J. Stat. Phys. 79(3/4), 613-647 (1995) · Zbl 1081.60541 · doi:10.1007/BF02184873
[31] Olivieri, E., Scoppola, E.: Markov chains with exponentially small transition probabilities: first exit problem from a general domain. II. The general case. J. Stat. Phys. 84(5/6), 987-1041 (1996) · Zbl 1081.60542 · doi:10.1007/BF02174126
[32] Oliveiri, E., Vares, M.E.: Large Deviations and Metastability. Cambridge University Press, Cambridge (2005) · Zbl 1075.60002 · doi:10.1017/CBO9780511543272
[33] Scoppola, E.: Renormalization group for Markov chains and application to metastability. JSP 73, 83-121 (1993) · Zbl 1101.82330
[34] Trouve, A.: Cycle decomposition and simulated annealing. SIAM J. Control. Optim. 34, 966-986 (1996) · Zbl 0852.60031 · doi:10.1137/S0363012993258586
[35] Trouve, A.: Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms. Ann. Inst. H. Poinc. 32, 299-348 (1996) · Zbl 0853.60029
[36] Wentzell, A.D.: On the asymptotics of eigenvalues of matrices with elements of order \[\exp (-V_{ij}/(2 \varepsilon^2))\] exp(-Vij/(2ε2)). Soviet Math. Dokl. 13(1), 65-68 (1972) · Zbl 0291.15018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.