×

Decentralized robust adaptive backstepping control for a class of non-minimum phase nonlinear interconnected systems. (English) Zbl 1530.93008

Summary: In this paper, a class of interconnected systems is considered, where the nominal isolated subsystems are fully nonlinear and non-minimum phase. A decentralized extended Kalman Filter-extended high gain observer (EKF-EHGO) is designed to observe the system states. Then, a systematic backstepping design procedure is employed to develop a novel decentralized robust adaptive output feedback control, in which the adaptive law is designed to counter the effects of the interconnections and uncertainties. The proposed decentralized dynamic output feedback control scheme can guarantee that all the signals in the closed-loop system are uniformly ultimately bounded (UUB). Both interconnections and uncertainties are allowed to be unmatched and bounded by an unknown high-order polynomial, which is a more general form when compared with existing work. Two MATLAB simulation examples are used to demonstrate the effectiveness of the proposed method including a system comprising translational oscillator with rotating actuator (TORA) sub-systems.

MSC:

93A14 Decentralized systems
93B35 Sensitivity (robustness)
93C40 Adaptive control/observation systems
93B52 Feedback control
93C10 Nonlinear systems in control theory
93B70 Networked control

Software:

Matlab
Full Text: DOI

References:

[1] Niu, B.; Liu, J.; Wang, D.; Zhao, X.; Wang, H., Adaptive decentralized asymptotic tracking control for large-scale nonlinear systems with unknown strong interconnections. IEEE/CAA J. Autom. Sin., 1, 173-186 (2022)
[2] Stanković, S. S.; Stipanović, D. M.; Šiljak, D. D., Decentralized dynamic output feedback for robust stabilization of a class of nonlinear interconnected systems. Automatica, 5, 861-867 (2007) · Zbl 1117.93057
[3] Zhou, Q.; Shahidehpour, M.; Paaso, A.; Bahramirad, S.; Alabdulwahab, A.; Abusorrah, A., Distributed control and communication strategies in networked microgrids. IEEE Commun. Surv. Tutor., 4, 2586-2633 (2020)
[4] Bian, T.; Jiang, Y.; Jiang, Z.-P., Decentralized adaptive optimal control of large-scale systems with application to power systems. IEEE Trans. Ind. Electron., 4, 2439-2447 (2015)
[5] Tang, Y.; Tomizuka, M.; Guerrero, G.; Montemayor, G., Decentralized robust control of mechanical systems. IEEE Trans. Automat. Control, 4, 771-776 (2000) · Zbl 1009.93058
[6] Chen, C.-T.; Peng, S.-T., A sliding mode control scheme for uncertain non-minimum phase CSTRs. J. Chem. Eng. Japan, 2, 181-196 (2006)
[7] X. Wang, D. Chen, Tip trajectory tracking for a one-link flexible manipulator using causal inversion, in: Proceedings of the International Conference on Control Applications, Vol. 1, 2002, pp. 507-512.
[8] Mu, J.; Yan, X.-G.; Spurgeon, S. K.; Zhao, D., Nonlinear sliding mode control for interconnected systems with application to automated highway systems. IEEE Trans. Control Netw. Syst., 1, 664-674 (2018) · Zbl 1511.93028
[9] Yu, Z.; Zhang, Y.; Jiang, B.; Fu, J.; Jin, Y.; Chai, T., Composite adaptive disturbance observer-based decentralized fractional-order fault-tolerant control of networked UAVs. IEEE Trans. Syst., Man, Cybern.: Syst, 2, 799-813 (2022)
[10] Bai, W.; Li, T.; Tong, S., NN reinforcement learning adaptive control for a class of nonstrict-feedback discrete-time systems. IEEE Trans. Cybern., 11, 4573-4584 (2020)
[11] Liu, Y.; Zhu, Q.; Wen, G., Adaptive tracking control for perturbed strict-feedback nonlinear systems based on optimized backstepping technique. IEEE Trans. Neural Netw. Learn. Syst., 2, 853-865 (2022)
[12] Liu, Y.; Li, X.-Y., Decentralized robust adaptive control of nonlinear systems with unmodeled dynamics. IEEE Trans. Automat. Control, 5, 848-856 (2002) · Zbl 1364.93401
[13] Yang, W.; Xia, J.; Shen, H.; Chen, G.; Wei, W., Observer-based decentralized adaptive control for large-scale nonlinear systems with mixed dynamic interaction. J. Franklin Inst. B, 1, 392-414 (2022) · Zbl 1480.93167
[14] Bi, W.; Wang, T., Adaptive fuzzy decentralized control for nonstrict feedback nonlinear systems with unmodeled dynamics. IEEE Trans. Syst., Man, Cybern.: Syst., 1, 275-286 (2022)
[15] Isidori, A., A tool for semi-global stabilization of uncertain non-minimum-phase nonlinear systems via output feedback. IEEE Trans. Automat. Control, 10, 1817-1827 (2000) · Zbl 0990.93115
[16] Nazrulla, S.; Khalil, H. K., Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers. IEEE Trans. Automat. Control, 4, 802-813 (2011) · Zbl 1368.93631
[17] Huang, X.; Khalil, H. K.; Song, Y., Regulation of nonminimum-phase nonlinear systems using slow integrators and high-gain feedback. IEEE Trans. Automat. Control, 2, 640-653 (2019) · Zbl 1482.93261
[18] Boker, A. M.; Khalil, H. K., Semi-global output feedback stabilization of non-minimum phase nonlinear systems. IEEE Trans. Automat. Control, 8, 4005-4010 (2017) · Zbl 1373.93256
[19] B.-J. Yang, A. Calise, Adaptive stabilization for a class of non-affine non-minimum phase systems using neural networks, in: 2006 American Control Conference, 2006, pp. 2291-2296.
[20] Karagiannis, D.; Astolfi, A.; Ortega, R., Two results for adaptive output feedback stabilization of nonlinear systems. Automatica, 5, 857-866 (2003) · Zbl 1023.93054
[21] Karagiannis, D.; Jiang, Z.; Ortega, R.; Astolfi, A., Output-feedback stabilization of a class of uncertain non-minimum-phase nonlinear systems. Automatica, 9, 1609-1615 (2005) · Zbl 1086.93021
[22] Quan, Q.; Cai, K.-Y., Sampled-data repetitive control for a class of non-minimum phase nonlinear systems subject to period variation. Internat. J. Systems Sci., 4, 704-718 (2020) · Zbl 1483.93375
[23] Yan, X.-G.; Spurgeon, S. K.; Edwards, C., Decentralised sliding mode control for nonminimum phase interconnected systems based on a reduced-order compensator. Automatica, 10, 1821-1828 (2006) · Zbl 1114.93035
[24] Boker, A. M.; Khalil, H. K., Nonlinear observers comprising high-gain observers and extended Kalman filters. Automatica, 12, 3583-3590 (2013) · Zbl 1315.93020
[25] Reif, K.; Sonnemann, F.; Unbehauen, R., An EKF-based nonlinear observer with a prescribed degree of stability. Automatica, 9, 1119-1123 (1998) · Zbl 0938.93504
[26] Yan, X.-G.; Spurgeon, S. K.; Zhao, D.; Guo, L., Decentralised stabilisation of nonlinear time delay interconnected systems. IFAC-PapersOnLine, 9, 152-157 (2016)
[27] Feng, J.; Zhao, D.; Yan, X.-G.; Spurgeon, S. K., Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback. Internat. J. Robust Nonlinear Control, 6, 2152-2170 (2020) · Zbl 1465.93026
[28] Yan, X.-G.; Spurgeon, S. K., Delay-independent decentralised output feedback control for large-scale systems with nonlinear interconnections. Internat. J. Control, 3, 473-482 (2014) · Zbl 1317.93215
[29] Jiang, Z.-P., Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback. IEEE Trans. Automat. Control, 11, 2122-2128 (2000) · Zbl 0989.93008
[30] Yan, X.-G.; Dai, G.-Z., Decentralized output feedback robust control for nonlinear large-scale systems. Automatica, 11, 1469-1472 (1998) · Zbl 0934.93007
[31] Yan, X.-G.; Spurgeon, S. K.; Edwards, C., Decentralised stabilisation for nonlinear time delay interconnected systems using static output feedback. Automatica, 2, 633-641 (2013) · Zbl 1259.93016
[32] Tong, S.; Sui, S.; Li, Y., Adaptive fuzzy decentralized tracking fault-tolerant control for stochastic nonlinear large-scale systems with unmodeled dynamics. Inform. Sci., 225-240 (2014) · Zbl 1355.93102
[33] Isidori, A., Nonlinear Control Systems (2013), Springer Science & Business Media · Zbl 0569.93034
[34] Jiang, Z.-P., Decentralized disturbance attenuating output-feedback trackers for large-scale nonlinear systems. Automatica, 8, 1407-1415 (2002) · Zbl 1003.93018
[35] Jiang, Z.-P.; Praly, L., Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica, 7, 825-840 (1998) · Zbl 0951.93042
[36] Ji, N.; Yan, X.-G.; Mao, Z.; Zhao, D.; Jiang, B., Decentralised state feedback stabilisation for nonlinear interconnected systems using sliding mode control*. Internat. J. Systems Sci., 5, 1017-1030 (2022) · Zbl 1495.93069
[37] Cheng, T.-T.; Niu, B.; Zhang, J.-M.; Wang, D.; Wang, Z.-H., Time-/event-triggered adaptive neural asymptotic tracking control of nonlinear interconnected systems with unmodeled dynamics and prescribed performance. IEEE Trans. Neural Netw. Learn. Syst., 1-11 (2021)
[38] Jain, S.; Khorrami, F., Decentralized adaptive output feedback design for large-scale nonlinear systems. IEEE Trans. Automat. Control, 5, 729-735 (1997) · Zbl 0883.93005
[39] Tong, S.; Liu, C.; Li, Y., Adaptive fuzzy backstepping output feedback control for strict feedback nonlinear systems with unknown sign of high-frequency gain. Neurocomputing, 1, 58-70 (2012)
[40] Liu, Y.-J.; Tong, S.; Chen, C. L.P., Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst., 2, 275-288 (2013)
[41] Wu, Y.; Sun, N.; Fang, Y.; Liang, D., An increased nonlinear coupling motion controller for underactuated multi-TORA systems: Theoretical design and hardware experimentation. IEEE Trans. Syst., Man, Cybern.: Syst., 6, 1186-1193 (2019)
[42] Y. Guo, Decentralized disturbance attenuation for large-scale nonlinear systems with delayed state interconnections, in: Proceedings of the 2004 American Control Conference, Vol. 5, 2004, pp. 4290-4295.
[43] Zhou, J.; Wen, C., Decentralized backstepping adaptive output tracking of interconnected nonlinear systems. IEEE Trans. Automat. Control, 10, 2378-2384 (2008) · Zbl 1367.93327
[44] Ye, X., Decentralized adaptive stabilization of large-scale nonlinear time-delay systems with unknown high-frequency-gain signs. IEEE Trans. Automat. Control, 6, 1473-1478 (2011) · Zbl 1368.93633
[45] Zhang, X.; Lin, Y., Nonlinear decentralized control of large-scale systems with strong interconnections. Automatica, 9, 2419-2423 (2014) · Zbl 1297.93133
[46] Zhang, C.; Wen, C.; Wang, L., Nonsmooth decentralized stabilization for interconnected systems subject to strongly coupled uncertain interactions. IEEE Trans. Syst., Man, Cybern.: Syst., 7, 2685-2692 (2020)
[47] Ma, H.-J.; Xu, L.-X., Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory. IEEE Trans. Automat. Control, 7, 3227-3234 (2021) · Zbl 1467.93016
[48] V. Andrieu, L. Praly, Global asymptotic stabilization by output feedback for some non minimum phase non linear systems, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 2622-2627.
[49] Andrieu, V.; Praly, L., Global asymptotic stabilization for nonminimum phase nonlinear systems admitting a strict normal form. IEEE Trans. Automat. Control, 5, 1120-1132 (2008) · Zbl 1367.93555
[50] Jia, X.; Xu, S.; Shi, X.; Du, B.; Zhang, Z., Adaptive output feedback tracking for time-delay nonlinear systems with unknown control coefficient and application to chemical reactors. Inform. Sci., 755-772 (2021) · Zbl 07791406
[51] Kluge, S.; Reif, K.; Brokate, M., Stochastic stability of the extended Kalman filter with intermittent observations. IEEE Trans. Automat. Control, 2, 514-518 (2010) · Zbl 1368.93717
[52] Boutayeb, M.; Rafaralahy, H.; Darouach, M., Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems. IEEE Trans. Autom. Control, 4, 581-586 (1997) · Zbl 0876.93089
[53] Langueh, K. A.A.; Zheng, G.; Floquet, T., Fixed-time sliding mode-based observer for non-linear systems with unknown parameters and unknown inputs. IET Control Theory Appl., 14, 1920-1927 (2020) · Zbl 1542.93348
[54] Na, J.; Mahyuddin, M. N.; Herrmann, G.; Ren, X.; Barber, P., Robust adaptive finite-time parameter estimation and control for robotic systems. Internat. J. Robust Nonlinear Control, 16, 3045-3071 (2015) · Zbl 1327.93285
[55] Zhang, Q., Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems. IEEE Trans. Automat. Control, 3, 525-529 (2002) · Zbl 1364.93415
[56] Swaroop, D.; Hedrick, J.; Yip, P.; Gerdes, J., Dynamic surface control for a class of nonlinear systems. IEEE Trans. Automat. Control, 10, 1893-1899 (2000) · Zbl 0991.93041
[57] D. Swaroop, J.C. Gerdes, P.P. Yip, J.K. Hedrick, Dynamic surface control of nonlinear systems, in: Proceedings of the 1997 American Control Conference, Vol. 5, 1997, pp. 3028-3034.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.