×

Regularized solution of an ill-posed biharmonic equation. (English) Zbl 1530.47012

Summary: In this paper we consider a severely ill posed problem associated with a two dimensional homogeneous biharmonic equation. By perturbing the original problem and using a two parameters regularization method, we get a stable solution which converges to the solution of the considered problem. Under some priori bound assumptions, different errors estimates for the regularized solution are obtained. These last ones depend on the choice of the space of the exact solution. To show the effectiveness of the proposed regularization method some numerical results are given.

MSC:

47A52 Linear operators and ill-posed problems, regularization
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
74K20 Plates
31A25 Boundary value and inverse problems for harmonic functions in two dimensions
Full Text: DOI

References:

[1] Andersson, LE; Elfving, T.; Golub, GH, Solution of biharmonic equations with application to radar imaging, J. Comput. Appl. Math., 94, 2, 153-180 (1998) · Zbl 0933.65128 · doi:10.1016/S0377-0427(98)00079-X
[2] Benrabah, A.; Boussetila, N., Modified nonlocal boundary value problem method for an ill-posed problem for the biharmonic equation, Inverse Probl. Sci. Eng, 27, 340-368 (2019) · Zbl 1471.65178 · doi:10.1080/17415977.2018.1461859
[3] Benrabah, A.; Boussetila, N.; Rebbani, F., Regularization method for an ill-posed Cauchy problem for elliptic equations, J. Inverse Ill-Posed Probl., 25, 288-311 (2017) · Zbl 1432.35244 · doi:10.1515/jiip-2015-0075
[4] Benrabah, A.; Boussetila, N.; Rebbani, F., Modified auxiliary boundary conditions method for an ill-posed problem for the homogeneous biharmonic equation, Math. Methods Appl. Sci., 43, 358-383 (2020) · Zbl 1445.35153 · doi:10.1002/mma.5888
[5] Ehrlich, LN; Gupta, MM, Some difference schemes for the biharmonic equation, SIAM J. Numer. Anal., 12, 5, 773-790 (1975) · Zbl 0331.65061 · doi:10.1137/0712058
[6] Berchio, E.; Gazzola, F.; Weth, T., Critical growth biharmonic elliptic problems under Steklov-type boundary conditions, Adv. Differ. Equ., 12, 381-406 (2007) · Zbl 1155.35018
[7] Berchio, E.; Gazzola, F.; Weth, T., Critical growth biharmonic elliptic problems under Steklov-type boundary conditions., J. Comput. Appl. Math., 160, 386-399 (2009) · Zbl 1155.35018
[8] Cheng, XL; Han, W.; Huang, HC, Some mixed finite element methods for biharmonic equation, J. Comput. Appl. Math., 126, 91-109 (2000) · Zbl 0973.65098 · doi:10.1016/S0377-0427(99)00342-8
[9] Choudhury, AP; Heck, H., Stability of the inverse boundary value problem for the biharmonic operator: logarithmic estimates, J. Inverse Ill-Posed Probl., 25, 251-263 (2017) · Zbl 1368.31003 · doi:10.1515/jiip-2016-0019
[10] Clark, GW; Oppenheimer, SF, Quasireversibility methods for non-well posed problems, Electron. J. Differ. Eqn., 8, 1-9 (1994) · Zbl 0811.35157
[11] Constanda, C., Doty, D.: Bending of elastic plates with transverse shear deformation: the Neumann problem. Math. Methods Appl. Sci. special issue (2018). doi:10.1002/mma.4704 · Zbl 1405.31004
[12] Dang, QA; Mai, XT, The Cauchy problem for elliptic equations, Inverse Prob., 25, 055002 (2009) · Zbl 1170.35555 · doi:10.1088/0266-5611/25/5/055002
[13] Dang, QA; Mai, XT, Iterative method for solving a problem with mixed boundary conditions for biharmonic equation arising in fracture mechanics, Bol. Soc. Paran. Mat. v., 31, 65-78 (2013) · Zbl 1413.65409
[14] Hào, DN; Duc, NV; Sahli, H., A non-local boundary value problem method for parabolic equations backward in time, J. Math. Anal. Appl., 345, 2, 805-815 (2008) · Zbl 1160.35070 · doi:10.1016/j.jmaa.2008.04.064
[15] Gazzola, F., On the moments of solutions to linear parabolic equations involving the biharmonic operator, Discret. Contin. Dyn. Syst., 33, 3583-3597 (2013) · Zbl 1277.35196 · doi:10.3934/dcds.2013.33.3583
[16] Gazzola, F.; Grunau, HC; Sweers, G., Polyharmonic Boundary Value Problems (2010), Berlin: Springer, Berlin · Zbl 1239.35002 · doi:10.1007/978-3-642-12245-3
[17] Hadamard, J., Lecture Note on Cauchy’s Problem in Linear Partial Differential Equations (1923), New Haven: Yale Uni Press, New Haven · JFM 49.0725.04
[18] Igor, V.; Andrianov, JA; Vladyslav, VD; Andrey, OI, Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions (2014), London: John Wiley and Sons, Ltd, London · Zbl 1286.76004
[19] Kal’menov, T.; Iskakova, U., On an ill-posed problem for a biharmonic equation, Filomat, 31, 1051-1056 (2017) · Zbl 1488.35608 · doi:10.2298/FIL1704051K
[20] Kal’menov, TS; Sadybekov, MA; Iskakova, UA, On a criterion for the solvability of one ill-posed problem for the biharmonic equation, J. Inverse Ill-Posed Probl., 24, 777-783 (2016) · Zbl 1351.35021 · doi:10.1515/jiip-2016-0003
[21] Karachik, VV, Normalized system of functions with respect to the Laplace operator and its applications, J. Math. Anal. Appl., 287, 577-592 (2003) · Zbl 1039.31009 · doi:10.1016/S0022-247X(03)00583-3
[22] Karachik, VV; Antropova, NA, Polynomial solutions of the Dirichlet problem for the biharmonic equation in the ball, Differ. Equ., 49, 251-256 (2013) · Zbl 1276.35070 · doi:10.1134/S0012266113020122
[23] Karachik, VV; Antropova, NA, Solvability conditions for the Neumann problem for the homogeneous polyharmonic equation, Differ. Equ., 50, 1449-1456 (2014) · Zbl 1319.35032 · doi:10.1134/S0012266114110032
[24] Lai, MC; Liu, HC, Fast direct solver for the biharmonic equation on a disk and its application to incompressible flows, Appl. Math. Comput., 164, 679-695 (2005) · Zbl 1070.65121
[25] Lesnic, D.; Zeb, A., The method of fundamental solution for an inverse internal boundary value problem for the biharmonic equation, Int. J. Comput. Methods, 6, 557-567 (2009) · Zbl 1267.65171 · doi:10.1142/S0219876209001991
[26] Li, J., Application of radial basis meshless methods to direct and inverse biharmonic boundary value problems, Commun. Numer. Methods. Eng., 21, 169-182 (2005) · Zbl 1067.65117 · doi:10.1002/cnm.736
[27] Luigi, P., A note on the Neumann eigenvalues of the biharmonic operator, Math. Methods Appl. Sci., 41, 1005-1012 (2016) · Zbl 1393.35033
[28] Lu, S., Pereverzev, S.V.: Regularization Theory for Ill-posed Problems: Selected Topics. Walter de Gruyter GmbH (2013). doi:10.1515/9783110286496 · Zbl 1282.47001
[29] Luan, T.N., Khieu, T.T., Khanh, T.Q.: A filter method with a priori and a posteriori parameter choice for the regularization of Cauchy problems for biharmonic equations. Numer. Algorithms (2020a). doi:10.1007/s11075-020-00951-4 · Zbl 1460.31023
[30] Luan, TN; Khieu, TT; Khanh, TQ, Regularized solution of the Cauchy problem for the biharmonic equation, Bull. Malays. Math. Sci. Soc., 43, 757-782 (2020) · Zbl 1436.31021 · doi:10.1007/s40840-018-00711-7
[31] Marin, L.; Lesnic, D., The method of fundamental solutions for inverse boundary value problems associated with the two-dimensional biharmonic equation, Math. Comput. Model., 42, 3, 261-278 (2005) · Zbl 1088.35079 · doi:10.1016/j.mcm.2005.04.004
[32] Mel’lnikova, I.V., Filinkov, A.: Methods for non-well posed problems. In: Symposium on Non-Well-Posed Problems and Logarithmic Convexity. Lecture Notes in Mathematics, vol. 316, pp. 161-176. Springer, Berlin (1973) · Zbl 0279.35004
[33] Mel’lnikova, I.V., Filinkov, A.: Abstract Cauchy problems: three approaches. In: Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 120. Chapman and Hall/CRC, Boca Raton (2001) · Zbl 0982.34001
[34] Ming-Gong, l.; Lih-Jier, Y.; Zi-Cai, L.; Po-Chun, C., Mixed types of boundary conditions at corners of linear elastostatics and their numerical solutions, Eng. Anal. Bound. Elem., 35, 1265-1278 (2011) · Zbl 1259.74087 · doi:10.1016/j.enganabound.2011.04.006
[35] Nguyen, H.T., Kirane, M., Quoc, N.D.H., Vo, V.A.: Approximation of an inverse initial problem for a biparabolic equation. Mediterr. J. Math. 15 (2018) · Zbl 1516.35533
[36] Nguyen, HT; Lesnic, D.; Tran, QV; Vo, VA, Regularization of the semilinear sideways heat equation, IMA J. Appl. Math., 84, 258-291 (2019) · Zbl 1471.80004 · doi:10.1093/imamat/hxy058
[37] Nikolai, VP; Anton, AD; Sandra, MT, Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations, Phys. Rev., 71, 041608 (2005)
[38] Schaefer, P., On the Cauchy problem for the nonlinear biharmonic equation, J. Math. Anal. Appl., 36, 3, 660-673 (1971) · Zbl 0195.11302 · doi:10.1016/0022-247X(71)90047-3
[39] Schaefer, P., On existence in the Cauchy problem for the biharmonic equation, Compos. Math., 28, 203-207 (1974) · Zbl 0281.31004 · doi:10.1090/S0025-5718-1974-0334482-3
[40] Selvadurai, APS, Partial Differential Equations in Mechanics 2: The Biharmonic Equation, Poissons Equation (2013), Cham: Springer, Cham
[41] Selvadurai, A.P.S.: Completion problem for biharmonic equation for rectangular domain. Analele Universiţŏtii de Vest, Timişoara LV. 129-147 (2017) · Zbl 1513.65453
[42] Timoshenko, S.; Goodier, JN, Theory of Elasticity (1951), New York: McGraw-Hill, New York · Zbl 0045.26402
[43] Trong, DD; Tuan, NH, A nonhomogeneous backward heat problem: regularization and error estimates, Electron. J. Differ. Equ., 2008, 33, 1-14 (2008) · Zbl 1171.35488
[44] Tuan, NH; Thang, LD; Khoa, VA, A modified integral equation method of the nonlinear elliptic equation with globally and locally Lipschitz source, Appl. Math. Comput., 265, 245-265 (2015) · Zbl 1410.35282
[45] Tuan, NH; Au, VV; Khoa, VA; Lesnic, D., Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction, Inverse Prob., 33, 40 (2017) · Zbl 1515.35357 · doi:10.1088/1361-6420/aa635f
[46] Zouyed, F.; Rebbani, F., A modified quasi-boundary value method for an ultraparabolic ill-posed problem, J. Inverse Ill-Posed Probl., 22, 449-466 (2014) · Zbl 1297.35121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.