×

Modified nonlocal boundary value problem method for an ill-posed problem for the biharmonic equation. (English) Zbl 1471.65178

Summary: In this paper, we propose a modified nonlocal boundary value problem method for an homogeneous biharmonic equation in a rectangular domain. We show that the considered problem is ill-posed in the sense of Hadamard, i.e. the solution does not depend continuously on the given data. Convergence estimates for the regularized solution are obtained under a priori bound assumptions for the exact solution. Some numerical results are given to show the effectiveness of the proposed method.

MSC:

65N20 Numerical methods for ill-posed problems for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
35B45 A priori estimates in context of PDEs
35J40 Boundary value problems for higher-order elliptic equations
35R25 Ill-posed problems for PDEs
47A52 Linear operators and ill-posed problems, regularization
Full Text: DOI

References:

[1] Hadamard J . Lecture note on Cauchy’s problem in linear partial differential equations. New Haven: Yale University Press; 1923. · JFM 49.0725.04
[2] Gazzola F , Grunau HC , Sweers G . Polyharmonic boundary value problems. A monograph on positivity preserving and nonlinear higher order elliptic equations in bounded domains. Berlin Heidelberg: Springer-Verlag; 2010. · Zbl 1239.35002
[3] Chang ASY . Conformal invariants and partial differential equations. Bull Amer Math Soc (NS). 2005;42:365-393. · Zbl 1087.53019 · doi:10.1090/S0273-0979-05-01058-X
[4] Tuan NH , Au VV , Khoa VA , et al. Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction. Inverse Probl. 2017;33(5):055019. 40 p. · Zbl 1515.35357 · doi:10.1088/1361-6420/aa635f
[5] Antman S . Nonlinear problems of elasticity. 2nd ed. Vol. 107, Applied mathematical sciences. New York (NY): Springer; 2005. · Zbl 1098.74001
[6] Ciarlet P . Mathematical elasticity. Vol. 27, Vol. II, Studies in mathematics and its applications. Amsterdam: North-Holland Publishing Co.; 1997. Theory of plates. MR 1477663 (99e:73001). · Zbl 0888.73001
[7] Adams D . Lp potential theory techniques and nonlinear PDE. Potential theory (Nagoya, 1990). Berlin: de Gruyter; 1992. p. 1-15. MR 1167217 (93e:31014). · Zbl 0764.31007
[8] Li J . Application of radial basis meshless methods to direct and inverse biharmonic boundary value problems. Commun Numer Methods Eng. 2005;21:169-182. · Zbl 1067.65117 · doi:10.1002/cnm.736
[9] Berchio E , Gazzola F , Weth T . Critical growth biharmonic elliptic problems under Steklov-type boundary conditions. Adv Differ Equ. 2007;12:381-406. · Zbl 1155.35018
[10] Berchio E , Gazzola F , Mitidieri E . Positivity preserving property for a class of biharmonic elliptic problems. J Differ Equ. 2006;229:1-23. · Zbl 1142.35016 · doi:10.1016/j.jde.2006.04.003
[11] Bucciarelli LL , Dworsky N , Germain S . An essay in the history of the theory of elasticity. Vol. 6, Studies in the history of modern science. Dordrecht: D. Reidel Publishing Co.; 1980. · Zbl 0544.73001
[12] Gazzola F . On the moments of solutions to linear parabolic equations involving the biharmonic operator. Discrete Contin Dyn Syst. 2013;33:3583-3597. · Zbl 1277.35196 · doi:10.3934/dcds.2013.33.3583
[13] Sweers G . A survey on boundary conditions for the biharmonic. Complex Var Elliptic Equ. 2009;54:79-93. · Zbl 1171.35034
[14] Meleshko VV . Selected topics in the history of the two-dimensional biharmonic problem. Appl Mech Rev. 2003;56:33-85. · doi:10.1115/1.1521166
[15] Lesnic D , Elliott L , Ingham DB . The boundary element solution of the Laplace and biharmonic equations subject to noisy data. Int J Numer Meth Eng. 1998;43:479-492. · Zbl 0941.76056 · doi:10.1002/(SICI)1097-0207(19981015)43:3<479::AID-NME430>3.0.CO;2-D
[16] Marin L , Lesnic D . The method of fundamental solutions for inverse boundary value problems associated with the two dimentional biharmonic equation. Math Comput Model. 2005;42:261-278. · Zbl 1088.35079 · doi:10.1016/j.mcm.2005.04.004
[17] Choudhury AP , Heck H . Stability of the inverse boundary value problem for the biharmonic operator: Logarithmic estimates. J Inverse Ill-Posed Probl. 2017;25:251-263. · Zbl 1368.31003 · doi:10.1515/jiip-2016-0019
[18] Kal’menov TS , Iskakova UA . On a boundary value problem for the biharmonic equation. AIP Conf Proc. 2015;1676. Article ID 020031. · doi:10.1063/1.4930457
[19] Lesnic D , Zeb A . The method of fundamental solution for an inverse internal boundary value problem for the biharmonic equation. Int J Comput Methods. 2009;6(4):557-567. · Zbl 1267.65171 · doi:10.1142/S0219876209001991
[20] Zeb A , Ingham DB , Lesnic D . The method of fundamental solutions for a biharmonic inverse boundary determination problem. Comput Mech. 2008;42:371-379. · Zbl 1163.65078 · doi:10.1007/s00466-008-0246-6
[21] Zeb A , Ingham DB , Lesnic D . The MFS for biharmonic Cauchy problems in annular domains. In: Trevelyan J , editor. Ch. 19. Advances in boundary integral methods: proceedings of the sixth UK conference on boundary integral methods; Durham University Press; 2007. p. 173-183.
[22] Sakakibara K . Method of fundamental solutions for biharmonic equation based on Almansi-type decomposition. Appl Math. 2017 Aug;62(4):297-317. · Zbl 1488.65722 · doi:10.21136/AM.2017.0018-17
[23] Thatcher RW . A least squares method for solving biharmonic problems. SIAM J Numer Anal. 2000;38:15231539. · Zbl 0987.65120 · doi:10.1137/S0036142999335383
[24] Li ZC . Boundary penalty finite element methods for blending surfaces-II: biharmonic equations. J Comput Appl Math. 1999;110:155-176. · Zbl 0942.65134 · doi:10.1016/S0377-0427(99)00208-3
[25] Xiangnan P , Chenb CS , Fangfang D . The MFS and MAFS for solving Laplace and biharmonic equations. Eng Anal Bound Elem. 2017;80:8793. · Zbl 1403.65260
[26] Li ZC , Lu TT , Hu HY . The collocation Trefftz method for biharmonic equations with crack singularities. Eng Anal Bound Elem. 2004;28:79-96. · Zbl 1106.74418 · doi:10.1016/S0955-7997(03)00094-8
[27] Iskakova UA . On a model of oscillations of a thin flat plate with a variety of mounts on opposite sides. Vestnik YuUrGU. Ser Mat Model Progr. 2016;9(2):110-116. · Zbl 1360.35270
[28] Kal’menov T , Iskakova U . On an Ill-posed problem for a biharmonic equation. Filomat. 2017;31:1051-1056. · Zbl 1488.35608 · doi:10.2298/FIL1704051K
[29] Benrabah A , Boussetila N , Rebbani F . Regularization method for an ill-posed Cauchy problem for elliptic equations. J Inverse Ill-Posed Probl. 2017;25(3):288-311. · Zbl 1432.35244 · doi:10.1515/jiip-2015-0075
[30] Boussetila N , Hamida S , Rebbani F . Spectral regularization methods for an abstract ill-posed elliptic problem. Abstr Appl Anal. 2013. Article ID 947379. 11 p. · Zbl 1470.35428
[31] Clark GW , Oppenheimer SF . Quasireversibility methods for non-well posed problems. Elect J Differ Equ. 1994;8:1-9. · Zbl 0811.35157
[32] Hào DN , Duc NV , Lesnic D . A non-local boundary value problem method for the Cauchy problem for elliptic equations. Inverse probl. 2009;25(5). 27 p. Biharmonic equation, mathematical and computer modelling. 2005;42:261-278. · Zbl 1170.35555 · doi:10.1088/0266-5611/25/5/055002
[33] Melnikova IV , Filinkov A . Abstract Cauchy problems: three approaches. Boca Raton (FL): Chapman and Hall; 2001. · Zbl 0982.34001 · doi:10.1201/9781420035490
[34] Vabishchevich PN , Denisenko AY . Regularization of nonstationary problems for elliptic equations. J Eng Phys Thermophys. 1993;65:1195-1199. · doi:10.1007/BF00861941
[35] Zhang H , Wei T . An improved non-local boundary value problem method for a cauchy problem of the Laplace equation. Numer Algor. 2012;59:249-269. · Zbl 1244.65132 · doi:10.1007/s11075-011-9487-0
[36] Zouyed F , Rebbani F . A modified quasi-boundary value method for an ultraparabolic ill-posed problem. J Inverse Ill-Posed Probl. 2014;22:449-466. · Zbl 1297.35121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.