×

Multiplicity and concentration of solutions to fractional anisotropic Schrödinger equations with exponential growth. (English) Zbl 1530.35010

Summary: In this paper, we consider the Schrödinger equation involving the fractional \((p,p_1,\dots ,p_m)\)-Laplacian as follows \[ (-\Delta )_p^su+\sum_{i=1}^m(-\Delta )_{p_i}^su+V(\varepsilon x)(|u|^{(N-2s)/2s}u+\sum_{i=1}^m|u|^{p_i-2}u)=f(u) \text{ in } {\mathbb{R}}^N, \] where \(\varepsilon\) is a positive parameter, \(N=ps\), \(s\in (0,1)\), \(2\le p<p_1< \dots< p_m<+\infty\), \(m\ge 1\). The nonlinear function \(f\) has the exponential growth and potential function \(V\) is continuous function satisfying some suitable conditions. Using the penalization method and Ljusternik-Schnirelmann theory, we study the existence, multiplicity and concentration of nontrivial nonnegative solutions for small values of the parameter. In our best knowledge, it is the first time that the above problem is studied.

MSC:

35A15 Variational methods applied to PDEs
35J35 Variational methods for higher-order elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35R11 Fractional partial differential equations
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

References:

[1] Adachi, S.; Tanaka, K., Trudinger type inequalities in \({\mathbb{R} }^N\) and their best exponents, Proc. Am. Math. Soc., 128, 2051-2057 (2000) · Zbl 0980.46020
[2] Adimurthi, A., Sandeep, K.: A singular Moser-Trudinger embedding and its applications. Nonlinear Differ. Equ. Appl. 13, 585-603 (2010). Int. Math. Res. Not. IMRN 13, 2394-2426 (2007) · Zbl 1171.35367
[3] Adimurthi, A.; Yang, Y., Interpolation of Hardy inequality and Trudinger-Moser inequality in \({\mathbb{R} }^N\) and its applications, Int. Math. Res. Not. IMRN, 13, 2394-2426 (2010) · Zbl 1198.35012
[4] Alves, CO; Figueiredo, GM, Multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in \({\mathbb{R} }^N,\), J. Differ. Equ., 246, 1288-1311 (2009) · Zbl 1160.35024
[5] Alves, C.O., do Ó, J.M., Miyagaki, O.H.: Concentration phenomena for fractional elliptic equations involving exponential critical growth. Adv. Nonlinear Stud. 16(4), 843-861 (2016) · Zbl 1488.35551
[6] Alves, CO; Miyagaki, OH, Existence and concentration of solution for a class of fractional elliptic equation in \({\mathbb{R} }^N\) via penalization method, Calc. Var. PDE, 55, 3, 47 (2016) · Zbl 1366.35212
[7] Alves, CO; Ambrosio, V.; Isernia, T., Existence, multiplicity and concentration for a class of fractional \((p, q)\)-Laplacian problems in \({\mathbb{R} }^N\), Commun. Pure Appl. Anal., 18, 4, 2009-2045 (2019) · Zbl 1412.35364
[8] Ambrosio, V.; Radulescu, VD, Fractional double-phase patterns: concentration and multiplicity of solutions, J. Math. Pures Appl., 142, 101-145 (2020) · Zbl 1448.35538
[9] Fiscella, A.; Pucci, P., Degenerate Kirchhoff \((p, q)\)-fractional systems with critical nonlinearities, Fract. Calc. Appl. Anal., 23, 3, 723-752 (2020) · Zbl 1474.35054
[10] Isernia, T., Fractional \((p, q)\)-Laplacian problems with potentials vanishing at infinity, Opusc. Math., 40, 1, 93-110 (2020) · Zbl 1437.35691
[11] Isernia, T.; Repovs, D., Nodal solutions for double phase Kirchhoff problems with vanishing potentials, Asymptot. Anal., 124, 3-4, 371-396 (2021) · Zbl 1505.35226
[12] Ambrosio, V.; Repovs, D., Multiplicity and concentration results for a \((p, q)\)-Laplacian problem in \({\mathbb{R} }^N\), Z. Angew. Math. Phys., 72, 1-33 (2021) · Zbl 1467.35184
[13] Antontsev, SN; Shmarev, SI, Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions, Nonlinear Anal., 65, 722-755 (2006)
[14] Ambrosio, V.; Isernia, T., Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional \(p\)-Laplace, Discret. Contin. Dyn. Syst. A, 38, 11, 5835-5881 (2018) · Zbl 06951275
[15] Ambrosio, V., On a fractional magnetic Schrödinger equation in \({\mathbb{R} }\) with exponential critical growth, Nonlinear Anal., 183, 117-148 (2019) · Zbl 1499.35549
[16] Ambrosio, V.; Isernia, T.; Radulescu, VD, Concentration of positive solutions for a class of fractional p-Kirchhoff type equations, Proc. R. Soc. Edinb. Sect. A Math., 151, 2, 601-651 (2021) · Zbl 07342500
[17] Benci, V.; Cerami, G., Multiple positive solutions of some elliptic problems via Morse theory and the domain topology, Calc. Var. Partial Differ. Equ., 2, 29-48 (1994) · Zbl 0822.35046
[18] Bonheure, D.; d’Avenia, P.; Pomponio, A., On the electrostatic Born-Infeld equation with extended charges, Commun. Math. Phys., 346, 877-906 (2016) · Zbl 1365.35170
[19] Born, M.; Infeld, L., Foundations of the new field theory, Nature, 132, 1004 (1933) · JFM 59.1512.01
[20] Brezis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 486-490 (1983) · Zbl 0526.46037
[21] Cherfils, L.; Il’yasov, V., On the stationary solutions of generalized reaction diffusion equations with p &q-Laplacian, Commun. Pure Appl. Anal., 1, 4, 1-14 (2004)
[22] Cingolani, S.; Lazzo, M., Multiple positive solutions to nonlinear Schrödinger equation with competing potential, J. Differ. Equ., 160, 118-138 (2000) · Zbl 0952.35043
[23] do Ó, J.A.M.B.: N-Laplacian equations in \({\mathbb{R}}^N\) with critical growth. Abstr. Appl. Anal. 2, 301-315 (1997) · Zbl 0932.35076
[24] do Ó, J.M., Souto, M.A.S.: On a class of nonlinear Schrödinger equations in \({\mathbb{R}}^2\) involving critical growth. J. Differ. Equ. 174, 289-311 (2001) · Zbl 1068.35036
[25] do Ó, J.A.M., Miyagaki, O.H., Squassina, M.: Nonautonomous fractional problems with exponential growth. NoDEA Nonlinear Differ. Equ. Appl. 22, 1395-1410 (2015) · Zbl 1332.35389
[26] do Ó, J.A.M., Miyagaki, O.H., Squassina, M.: Ground states of nonlocal scalar field equations with Trudinger-Moser critical nonlinearity. Topol. Methods Nonlinear Anal. 48, 477-492 (2016) · Zbl 1375.35184
[27] de Figueiredo, DG; Miyagaki, OH; Ruf, B., Elliptic equations in \({\mathbb{R} }^2\) with nonlinearities in the critical growth range, Calc. Var. PDE, 3, 139-153 (1995) · Zbl 0820.35060
[28] Figueiredo, GM; Siciliano, G., A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in \({\mathbb{R} }^N\), NoDEA Nonlinear Differ. Equ. Appl., 23, 2, 12 (2016) · Zbl 1375.35599
[29] Figueiredo, GM; Molica Bisci, G.; Servadei, R., The effect of the domain topology on the number of solutions of fractional Laplace problems, Calc. Var., 57, 103 (2018) · Zbl 1423.35110
[30] He, X.; Zou, W., Existence and concentration result for the fractional Schrödinger equations with critical nonlinearity, Calc. Var. PDE, 55, 91 (2016) · Zbl 1395.35193
[31] Iannizzotto, A.; Squassina, M., \( \dfrac{1}{2} \)-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl., 414, 372-385 (2014) · Zbl 1328.35276
[32] Iula, S.; Maalaoui, A.; Martinazzi, L., A fractional Moser-Trudinger type inequality in one dimension and its critical points, Differ. Integral Equ., 29, 455-492 (2016) · Zbl 1363.26011
[33] Iula, S., A note on the Moser-Trudinger inequality in Sobolev-Slobodeckij spaces in dimension one, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28, 871-884 (2017) · Zbl 1377.35267
[34] Laskin, N., Fractional quantum mechanics and Levy path integrals, Phys. Lett. A, 268, 298-305 (2000) · Zbl 0948.81595
[35] Laskin, N., Fractional Schrödinger equation, Phys. Rev. E, 66, 056108-056114 (2002)
[36] Lam, N.; Lu, G., Existence and multiplicity of solutions to equations of \(N\)-Laplace type with critical exponential growth in \({\mathbb{R} }^N\), J. Funct. Anal., 262, 1132-1165 (2012) · Zbl 1236.35050
[37] Lam, N.; Lu, G., A new approach to sharp Moser-Trudinger and Adams type inequalities: a rearrangement-free argument, J. Differ. Equ., 255, 298-325 (2013) · Zbl 1294.46034
[38] Lia, Q.; Yang, Z., Multiple solutions for a class of fractional quasi-linear equations with critical exponential growth in \({\mathbb{R} }^N\), Complex Var. Elliptic Equ., 61, 969-983 (2016) · Zbl 1345.31014
[39] Martinazzi, L., Fractional Adams-Moser-Trudinger type inequalities, Nonlinear Anal., 127, 263-278 (2015) · Zbl 1344.46032
[40] Molica Bisci, G.; Thin, NV; Vilasi, L., On a class of nonlocal Schrödinger equations with exponential growth, Adv. Differ. Equ., 27, 571-610 (2022) · Zbl 1494.35017
[41] Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20, 1077-1092 (1971) · Zbl 0203.43701
[42] Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023
[43] Parini, E.; Ruf, B., On the Moser-Trudinger inequality in fractional Sobolev-Slobodeckij spaces, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 29, 315-319 (2018) · Zbl 1404.46036
[44] Pino, MD; Felmer, PL, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial. Differ. Equ., 4, 121-137 (1996) · Zbl 0844.35032
[45] Perera, K.; Squassina, M., Bifurcation results for problems with fractional Trudinger-Moser nonlinearity, Discret. Contin. Dyn. Syst. Ser. S, 11, 561-576 (2018) · Zbl 1374.35185
[46] Pucci, P.; Xiang, M.; Zhang, B., Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional \(p\)-Laplacian in \({\mathbb{R} }^N\), Calc. Var. PDE, 54, 2785-2806 (2015) · Zbl 1329.35338
[47] Rabinowitz, P., Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics (1986), Providence: American Mathematical Society, Providence · Zbl 0609.58002
[48] Rabinowitz, P., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 2, 270-291 (1992) · Zbl 0763.35087
[49] Secchi, S., Ground state solutions for nonlinear fractional Schrödinger equations in \({\mathbb{R} }^N\), J. Math. Phys., 54 (2013) · Zbl 1281.81034
[50] Shang, X.; Zhang, J.; Yang, Y., On fractional Schrödinger equations with critical growth, J. Math. Phys., 54, 12, 121502 (2013) · Zbl 1290.35251
[51] Shang, X.; Zhang, J., Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27, 2, 187-208 (2014) · Zbl 1287.35027
[52] Thin, NV, Singular Trudinger-Moser inequality and fractional \(p\)-Laplace equation in \({\mathbb{R} }^N\), Nonlinear Anal., 196, 111756 (2020) · Zbl 1437.35009
[53] Thin, NV, Existence of solution to singular Schrödinger systems involving the fractional \(p\)-Laplacian with Trudinger-Moser nonlinearity in \({\mathbb{R} }^N\), Math. Methods Appl. Sci., 44, 8, 6540-6570 (2021) · Zbl 1471.35311
[54] Thin, NV, Multiplicity and concentration of solutions to a fractional \((p, p_1)\)-Laplace problem with exponential growth, J. Math. Anal. Appl., 506, 2, 125667 (2022) · Zbl 1479.35276
[55] Trudinger, NS, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17, 473-483 (1967) · Zbl 0163.36402
[56] Wang, X., On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., 53, 229-244 (1993) · Zbl 0795.35118
[57] Willem, M., Minimax Theorems (1996), Birkhäuser: Basel, Birkhäuser · Zbl 0856.49001
[58] Xiang, M.; Zhang, B.; Repovs, D., Existence and multiplicity of solutions for fractional Schrödinger-Kirchhoff equations with Trudinger-Moser nonlinearity, Nonlinear Anal., 186, 74-98 (2019) · Zbl 1418.35372
[59] Xiang, M.; Radulescu, VD; Zhang, B., Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity, Calc. Var. PDE, 58, 57 (2019) · Zbl 1407.35216
[60] Zhang, B.; Fiscella, A.; Liang, S., Infinitely many solutions for critical degenerate Kirchhoff type equations involving the fractional \(p\)-Laplacian, Appl. Math. Optim., 80, 63-80 (2019) · Zbl 1421.35097
[61] Zhang, C., Trudinger-Moser inequalities in fractional Sobolev-Slobodeckij spaces and multiplicity of weak solutions to the fractional-Laplacian equation, Adv. Nonlinear Stud., 19, 197-217 (2019) · Zbl 1415.35288
[62] Zhang, Y.; Tang, X.; Radulescu, VD, Concentration of solutions for fractional double-phase problems: critical and supercritical cases, J. Differ. Equ., 302, 139-184 (2021) · Zbl 1481.35385
[63] Wang, F.; Xiang, M., Multiplicity of solutions for a class of fractional Choquard-Kirchhoff equations involving critical nonlinearity, Anal. Math. Phys., 9, 1-16 (2019) · Zbl 1417.49003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.