×

Existence and concentration of solution for a class of fractional elliptic equation in \(\mathbb {R}^N\) via penalization method. (English) Zbl 1366.35212

The authors state that the following problem \[ (*):\;\varepsilon^{2s}(-\Delta)^su+V(x)u=f(u)\text{ in }\mathbb R^n, \] has a positive solution \(u_\varepsilon\in H^s(\mathbb R^n)\) for all \(\varepsilon\in (0,\varepsilon_0)\), where \(\varepsilon_0>0\), and that if \(x_\varepsilon\) is an associated global maximum point, then \(\displaystyle \lim_{\varepsilon\to0}V(x_\varepsilon)=V_0=\inf_{\xi\in \Lambda}V(\xi)<\min_{\zeta\in\partial \Lambda}V(\zeta)\) where \(\Lambda\) is a bounded set in \(\mathbb R^n\) and \(\partial \Lambda\) is its boundary. Apropos of \(H^s(\mathbb R^n),(-\Delta)^s\), they are, respectively, the fractional Sobolev space and the fractional Laplacian operator for \(s\in (0,1)\). Furthermore, the authors assume that \(\displaystyle \liminf\limits_{|\xi|\to\infty}V(\xi)>\inf_{\xi\in\mathbb R^n}V(\xi)=V_1>0\). With regard to \(f\), the authors suppose that it satisfies meaningful conditions (Theorem 1.1). The novelty of the results is that the authors consider \(V\) and \(f\) belonging to a particular large class of functions. The authors take recourse in using Caffarelli and Silvester’s method, through which looking for a solution of \((*)\) reduces to seeking a solution of \[ (**):\;-\operatorname{div}(y^{1-2s}\nabla w)=0\text{ in }\mathbb R_+^{n+1}\text{ and } \]
\[ -k_s\frac{\partial w}{\partial \nu}=-V(\varepsilon x)w+g(\varepsilon x,\omega)\text{ on }\mathbb R^n\times\{0\}. \] Here, \(k_s\) is a parameter relying on \(s\) given in terms of the gamma function and \(\displaystyle \frac{\partial w}{\partial \nu}:=\lim_{y\to0^+}y^{1-2s}\frac{\partial w}{\partial y}(x,y)=-\frac{1}{k_s}(-\Delta)^su(x)\), and \(g(x,t)=\mathcal{X}_\Lambda(x)f(t)+(1-\mathcal{X}_\Lambda)\widetilde{f}(t)\) for \((x,t)\in \mathbb R^n\times \mathbb R\), where \(\widetilde{f}(t)=f(t)\text{ if }t\leq a\text{ and }\widetilde{f}(t)=\displaystyle\frac{V_1}{k}t\text{ if }t\geq a>0\) such that \(k,a\) are fixed numbers, and \(\mathcal{X}_\Lambda\) stands for the indicator function on \(\Lambda\). Among the tools used by the authors, they show that \(E_\varepsilon(\cdot)\), the energy functional associated to \((**)\) satisfies the Palais-Small compactness condition and has a nonnegative critical point on \(X^{1,s}\), the completion of the set of smooth functions with compact support on the closure of \(\mathbb R^{n+1}\), with respect to a suitable norm (Lemma 2.2 and Theorem 2.1).

MSC:

35R11 Fractional partial differential equations
35J15 Second-order elliptic equations
35A15 Variational methods applied to PDEs
35B09 Positive solutions to PDEs

References:

[1] Alves, C.O., do Ó, J.M.B., Souto, M.A.S.: Local mountain-pass for a class of elliptic problems involving critical growth. Nonlinear Anal. 46, 495-510 (2001) · Zbl 1113.35323
[2] Alves, C.O., Figueiredo, G.M.: Multiplicity and concentration of positive solutions for a class of quasilinear problems via penalization methods. Adv. Nonlinear Stud. 11(2), 265-294 (2011) · Zbl 1231.35006 · doi:10.1515/ans-2011-0203
[3] Alves, C.O., Souto, M.A.S.: On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Commun. Pure Appl. Anal. 3, 417-431 (2002) · Zbl 1183.35121
[4] Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 1-21 (2001) · Zbl 1076.35037 · doi:10.1142/S0219199701000494
[5] Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on \[\mathbb{R}^N\] RN. Commun. Partial Differ. Equ. 20, 1725-1741 (1995) · Zbl 0837.35043 · doi:10.1080/03605309508821149
[6] Brändle, C., Colorado, E., Sánchez, U.: A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. A 143, 39-71 (2013) · Zbl 1290.35304 · doi:10.1017/S0308210511000175
[7] Cabré, X., Sire, Y.: Nonlinear equations for fractional laplacians, I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Non Linéare 31, 23-53 (2014) · Zbl 1286.35248 · doi:10.1016/j.anihpc.2013.02.001
[8] Caffarelli, L., Silvestre, L.: An extension problems related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[9] Chang, X., Wang, Z.Q.: Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differ. Equ. 256, 2965-2992 (2014) · Zbl 1327.35397 · doi:10.1016/j.jde.2014.01.027
[10] Chen, G., Zheng, Y.: Concentration phenomena for fractional noninear Schrödinger equations. Commun. Pure Appl. Anal. 13, 2359-2376 (2014) · Zbl 1304.35634 · doi:10.3934/cpaa.2014.13.2359
[11] Dávila, J., del Pino, M., Wei, J.C.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256, 858-892 (2014) · Zbl 1322.35162 · doi:10.1016/j.jde.2013.10.006
[12] del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121-137 (1996) · Zbl 0844.35032 · doi:10.1007/BF01189950
[13] del Pino, M., Felmer, P.L., Miyagaki, O.H.: Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential. Nonlinear Anal. 34, 979-989 (1998) · Zbl 0943.35026 · doi:10.1016/S0362-546X(97)00593-2
[14] Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche 68, 1 (2013) · Zbl 1287.35023
[15] Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[16] do Ó, J.M.B., Souto, M.A.S.: On a class of nonlinear Schrödinger equations in \[\mathbb{R}^2\] R2 involving critical growth. J. Differ. Equ. 174, 289-311 (2001) · Zbl 1068.35036
[17] Fall, M.M., Mahmoudi, F., Valdinoci, E.: Ground states and concentration phenomena for the fractional Schrödinger equation. arXiv:1411.0576v2 [math.AP] (2015) · Zbl 1320.35320
[18] Felmer, P., Quass, A., Tan, J.: Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. A 142, 1237-1262 (2012) · Zbl 1290.35308 · doi:10.1017/S0308210511000746
[19] Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equations with bounded potential. J. Funct. Anal. 69, 397-408 (1986) · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[20] Oh, Y.J.: Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials on the class \[(V)_a(V)\] a. Commun. Partial Differ. Equ. 13, 1499-1519 (1988) · Zbl 0702.35228 · doi:10.1080/03605308808820585
[21] Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. 43, 270-291 (1992) · Zbl 0763.35087 · doi:10.1007/BF00946631
[22] Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \[\mathbb{R}^N\] RN. J. Math. Phys. 54, 031501-17 (2013) · Zbl 1281.81034 · doi:10.1063/1.4793990
[23] Shang, X., Zhang, J.: Concentrating solutions of nonlinear fractional Schrödinger equation with potentials. J. Differ. Equ. 258, 1106-1128 (2015) · Zbl 1348.35243 · doi:10.1016/j.jde.2014.10.012
[24] Shang, X., Zhang, J., Yang, Y.: On fractional Schrödinger equation in \[\mathbb{R}^N\] RN with critical growth. J. Math. Phys. 54, 121502-19 (2013) · Zbl 1290.35251 · doi:10.1063/1.4835355
[25] Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 53, 229-244 (1993) · Zbl 0795.35118 · doi:10.1007/BF02096642
[26] Zhang, J., Liu, X., Jiao, H.: Multiplicity of positive solutions for a fractional Laplacian equations involving critical nonlinearity. arXiv:1502.02222 [math.AP] · Zbl 1418.35165
[27] Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996) · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.