×

The Dunkl-Laplace transform and Macdonald’s hypergeometric series. (English) Zbl 1530.33013

Summary: We continue a program generalizing classical results from the analysis on symmetric cones to the Dunkl setting for root systems of type \(A\). In particular, we prove a Dunkl-Laplace transform identity for Heckman-Opdam hypergeometric functions of type \(A\) and more generally, for the associated Opdam-Cherednik kernel. This is achieved by analytic continuation from a Laplace transform identity for non-symmetric Jack polynomials which was stated, for the symmetric case, as a key conjecture by I. G. Macdonald [“Hypergeometric functions I”, Preprint, arXiv:1309.4568v1]. Our proof for the Jack polynomials is based on Dunkl operator techniques and the raising operator of F. Knop and S. Sahi [Invent. Math. 128, No. 1, 9–22 (1997; Zbl 0870.05076)]. Moreover, we use these results to establish Laplace transform identities between hypergeometric series in terms of Jack polynomials. Finally, we conclude with a Post-Widder inversion formula for the Dunkl-Laplace transform.

MSC:

33C67 Hypergeometric functions associated with root systems
33C52 Orthogonal polynomials and functions associated with root systems
43A85 Harmonic analysis on homogeneous spaces
05E05 Symmetric functions and generalizations
33C80 Connections of hypergeometric functions with groups and algebras, and related topics
44A10 Laplace transform
44A15 Special integral transforms (Legendre, Hilbert, etc.)

Citations:

Zbl 0870.05076

Software:

DLMF

References:

[1] Arendt, Wolfgang, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, xii+523 pp. (2001), Birkh\"{a}user Verlag, Basel · Zbl 0978.34001 · doi:10.1007/978-3-0348-5075-9
[2] Baker, Timothy H., The Calogero-Sutherland model and generalized classical polynomials, Comm. Math. Phys., 175-216 (1997) · Zbl 0903.33010 · doi:10.1007/s002200050161
[3] Baker, Timothy H., Nonsymmetric Jack polynomials and integral kernels, Duke Math. J., 1-50 (1998) · Zbl 0948.33012 · doi:10.1215/S0012-7094-98-09501-1
[4] Constantine, Alan G., Some non-central distribution problems in multivariate analysis, Ann. Math. Statist., 1270-1285 (1963) · Zbl 0123.36801 · doi:10.1214/aoms/1177703863
[5] Dunkl, Charles F., Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc., 167-183 (1989) · Zbl 0652.33004 · doi:10.2307/2001022
[6] Dunkl, Charles F., Integral kernels with reflection group invariance, Canad. J. Math., 1213-1227 (1991) · Zbl 0827.33010 · doi:10.4153/CJM-1991-069-8
[7] Dunkl, Charles F., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, xviii+420 pp. (2014), Cambridge University Press, Cambridge · Zbl 1317.33001 · doi:10.1017/CBO9781107786134
[8] Faraut, Jacques, Deux formules d’inversion pour la transformation de Laplace sur un c\^one sym\'{e}trique, C. R. Acad. Sci. Paris S\'{e}r. I Math., 5-8 (1990) · Zbl 0692.43004
[9] Faraut, Jacques, Analysis on symmetric cones, Oxford Mathematical Monographs, xii+382 pp. (1994), The Clarendon Press, Oxford University Press, New York · Zbl 0841.43002
[10] Forrester, Peter J., Log-gases and random matrices, London Mathematical Society Monographs Series, xiv+791 pp. (2010), Princeton University Press, Princeton, NJ · Zbl 1217.82003 · doi:10.1515/9781400835416
[11] Gross, Kenneth I., Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions, Trans. Amer. Math. Soc., 781-811 (1987) · Zbl 0626.33010 · doi:10.2307/2000670
[12] Heckman, Gert J., Encyclopedia of special functions: the Askey-Bateman project. Vol. 2. Multivariable special functions. Jacobi polynomials and hypergeometric functions associated with root systems, 217-257 (2021), Cambridge Univ. Press, Cambridge · Zbl 1484.33001
[13] Herz, Carl S., Bessel functions of matrix argument, Ann. of Math. (2), 474-523 (1955) · Zbl 0066.32002 · doi:10.2307/1969810
[14] Frederik Hoppe, Ein Inversionssatz f\"ur die Laplace-Transformation im Dunkl-Setting, Master Thesis, Paderborn University, 2020.
[15] de Jeu, Marcel F. E., The Dunkl transform, Invent. Math., 147-162 (1993) · Zbl 0789.33007 · doi:10.1007/BF01244305
[16] Kadell, Kevin W. J., The Selberg-Jack symmetric functions, Adv. Math., 33-102 (1997) · Zbl 0885.33009 · doi:10.1006/aima.1997.1642
[17] Kaneko, Jyoichi, Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM J. Math. Anal., 1086-1110 (1993) · Zbl 0783.33008 · doi:10.1137/0524064
[18] Klenke, Achim, Probability theory, Universitext, xii+638 pp. (2014), Springer, London · Zbl 1295.60001 · doi:10.1007/978-1-4471-5361-0
[19] Knop, Friedrich, A recursion and a combinatorial formula for Jack polynomials, Invent. Math., 9-22 (1997) · Zbl 0870.05076 · doi:10.1007/s002220050134
[20] Kr\"{o}tz, Bernhard, Analysis on the crown domain, Geom. Funct. Anal., 1326-1421 (2008) · Zbl 1189.22008 · doi:10.1007/s00039-008-0684-5
[21] Macdonald, Ian G., Algebraic groups Utrecht 1986. Commuting differential operators and zonal spherical functions, Lecture Notes in Math., 189-200 (1987), Springer, Berlin · Zbl 0629.43010 · doi:10.1007/BFb0079238
[22] Ian G. Macdonald, Hypergeometric functions I, 1309.4568v1 (math.CA).
[23] Muirhead, Robb J., Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics, xix+673 pp. (1982), John Wiley & Sons, Inc., New York · Zbl 0556.62028
[24] NIST handbook of mathematical functions, xvi+951 pp. (2010), U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge · Zbl 1198.00002
[25] Opdam, Eric M., Harmonic analysis for certain representations of graded Hecke algebras, Acta Math., 75-121 (1995) · Zbl 0836.43017 · doi:10.1007/BF02392487
[26] R\"{o}sler, Margit, Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys., 519-542 (1998) · Zbl 0908.33005 · doi:10.1007/s002200050307
[27] R\"{o}sler, Margit, Orthogonal polynomials and special functions. Dunkl operators: theory and applications, Lecture Notes in Math., 93-135 (2002), Springer, Berlin · Zbl 1029.43001 · doi:10.1007/3-540-44945-0\_3
[28] R\"{o}sler, Margit, Riesz distributions and Laplace transform in the Dunkl setting of type A, J. Funct. Anal., 108506, 29 pp. (2020) · Zbl 1435.33016 · doi:10.1016/j.jfa.2020.108506
[29] R\"{o}sler, Margit, Limit transition between hypergeometric functions of type BC and type A, Compos. Math., 1381-1400 (2013) · Zbl 1405.33019 · doi:10.1112/S0010437X13007045
[30] R\"{o}sler, Margit, Markov processes related with Dunkl operators, Adv. in Appl. Math., 575-643 (1998) · Zbl 0919.60072 · doi:10.1006/aama.1998.0609
[31] Sahi, Siddhartha, The binomial formula for nonsymmetric Macdonald polynomials, Duke Math. J., 465-477 (1998) · Zbl 0947.33012 · doi:10.1215/S0012-7094-98-09419-4
[32] Sahi, Siddhartha, Biorthogonal expansion of non-symmetric Jack functions, SIGMA Symmetry Integrability Geom. Methods Appl., Paper 106, 9 pp. (2007) · Zbl 1150.33004 · doi:10.3842/SIGMA.2007.106
[33] Schapira, Bruno, Contributions to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz space, heat kernel, Geom. Funct. Anal., 222-250 (2008) · Zbl 1147.33004 · doi:10.1007/s00039-008-0658-7
[34] Stanley, Richard P., Some combinatorial properties of Jack symmetric functions, Adv. Math., 76-115 (1989) · Zbl 0743.05072 · doi:10.1016/0001-8708(89)90015-7
[35] Titchmarsh, Edward C., The theory of functions, x+454 pp. (1939), Oxford University Press, Oxford · JFM 65.0302.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.