×

Markov processes related with Dunkl operators. (English) Zbl 0919.60072

Dunkl operators are differential-difference operators associated with a finite reflection group, acting on some Euclidean space, and they can be regarded as a generalization of partial derivatives and play a major role in the theory of quantum many-body systems. This paper is a systematic work connected with investigation of some probabilistic aspects of the theory of Dunkl operators. The authors give a clear introduction to the Dunkl theory with basic facts on reflection groups, root systems, multiplicity functions; then the associated Dunkl operators, the Dunkl kernel (as a generalization of the exponential function), and the Dunkl transform (as a generalization of the Fourier transform) are introduced. A generalization of a one-parameter semigroup of Markov kernels on \(R^{N}\) is Dunkl’s Laplacian, and is called the \(k\)-Gaussian semigroup. Also, the concept of \(k\)-invariant Markov kernels on \(R^{N}\) is introduced using the algebraic connections between \(k\)-Gaussian semigroups and the Dunkl transform. It allows to define semigroups of \(k\)-invariant Markov kernels as well as the associated Markov processes, which are called \(k\)-invariant. A characterization of \(k\)-invariant Markov processes on \(R^{N}\) are unique solutions of martingale problems in the sense of Stroock and Varadhan. Some limit theorems for \(k\)-invariant Markov processes are considered. Namely, a law of the iterated logarithm for \(k\)-Gaussian processes, a strong law of large numbers for general \(k\)-invariant processes in discrete time, and a transience criterion. A generalization of Ornstein-Uhlenbeck processes to the Dunkl setting is given. Also, the authors systematically study modified moments of higher order for \(k\)-Gaussian measures, which are connected with a generalization of Hermite polynomials and the Appell systems.

MSC:

60J25 Continuous-time Markov processes on general state spaces
60G50 Sums of independent random variables; random walks
60G44 Martingales with continuous parameter
34K05 General theory of functional-differential equations
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

References:

[1] Albeverio, S.; Daletsky, Yu. L.; Kondratiev, Yu. G.; Streit, L., Non-Gaussian infinite-dimensional analysis, J. Funct. Anal., 138, 311-350 (1996) · Zbl 0868.60041
[2] Baker, T. H.; Forrester, P. J., The Calogero-Sutherland model and polynomials with prescribed symmetry, Nuclear Phys. B, 492, 682-716 (1997) · Zbl 0986.33500
[3] T. H. Baker, P. J. Forrester, Non-symmetric Jack polynomials and integral kernels, Duke Math. J.; T. H. Baker, P. J. Forrester, Non-symmetric Jack polynomials and integral kernels, Duke Math. J. · Zbl 0948.33012
[4] Bauer, H., Probability Theory (1996), de Gruyter: de Gruyter Berlin · Zbl 0868.60001
[5] Berest, Y.; Molchanov, Y., Fundamental solutions for partial differential equations with reflection group invariance, J. Math. Phys., 36, 4324-4339 (1995) · Zbl 0872.35003
[6] Yu. M. Berezansky, Construction of the operators of generalized translation by Appell characters, in; Yu. M. Berezansky, Construction of the operators of generalized translation by Appell characters, in
[7] Berezansky, Yu. M.; Kondratiev, Yu. G., Biorthogonal systems in hypergroups: An extension of non-Gaussian analysis, Methods Funct. Anal. Topology, 2, 1-50 (1996) · Zbl 0921.43003
[8] Berezansky, Yu. M.; Kondratiev, Yu. G., Non-Gaussian analysis and hypergroups, Funct. Anal. Appl., 29, 188-191 (1996) · Zbl 0853.43014
[9] Berg, C.; Forst, G., Potential Theory on Locally Compact Abelian Groups (1975), Springer-Verlag: Springer-Verlag Berlin/Heidelberg · Zbl 0308.31001
[10] Bloom, W. R.; Heyer, H., Harmonic Analysis of Probability Measures on Hypergroups (1995), de Gruyter: de Gruyter Berlin · Zbl 0828.43005
[11] Calogero, F., Solution of the one-dimensional \(N\), J. Math. Phys., 12, 419-436 (1971) · Zbl 1002.70558
[12] Cherednik, I., A unification of the Knizhnik-Zamolodchikov equations and Dunkl operators via affine Hecke algebras, Invent. Math., 106, 411-432 (1991) · Zbl 0725.20012
[13] van Diejen, J. F., Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero system with harmonic confinement, Comm. Math. Phys., 188, 467-497 (1997) · Zbl 0917.33008
[14] Dunkl, C. F., Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc., 311, 167-183 (1989) · Zbl 0652.33004
[15] Dunkl, C. F., Integral kernels with reflection group invariance, Can. J. Math., 43, 1213-1227 (1991) · Zbl 0827.33010
[16] Dunkl, C. F., Hankel transforms associated to finite reflection groups, Proceedings of the Special Session on Hypergeometric Functions on Domains of Positivity, Jack Polynomials and Applications (1992), p. 123-138 · Zbl 0789.33008
[17] C. F. Dunkl, Intertwining operators and polynomials associated with the symmetric group, Math. Nachr.; C. F. Dunkl, Intertwining operators and polynomials associated with the symmetric group, Math. Nachr. · Zbl 0912.33007
[18] C. F. Dunkl, Intertwining operators of type\(B_N\); C. F. Dunkl, Intertwining operators of type\(B_N\)
[19] Dynkin, E. B., Markov Processes I (1965), Springer-Verlag: Springer-Verlag Berlin/Heidelberg · Zbl 0132.37901
[20] Ethier, S. N.; Kurtz, T. G., Markov Processes: Characterization and Convergence (1986), Wiley: Wiley New York · Zbl 0592.60049
[21] Feinsilver, Ph.; Schott, R., Algebraic Structures and Operator Calculus. Algebraic Structures and Operator Calculus, Representations of Lie groups, III (1996), Kluwer: Kluwer Dordrecht · Zbl 0885.22014
[22] Feller, W., An Introduction to Probability Theory and Its Applications (1965), Wiley: Wiley New York · Zbl 0155.23101
[23] Heckman, G. J., An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math., 103, 341-350 (1991) · Zbl 0721.33009
[24] Humphreys, J. E., Reflection Groups and Coxeter Groups (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0725.20028
[25] de Jeu, M. F.E., The Dunkl transform, Invent. Math., 113, 147-162 (1993) · Zbl 0789.33007
[26] Kamefuchi, S.; Ohnuki, Y., Quantum Field Theory and Parastatistics (1982), Univ. of Tokyo Press: Univ. of Tokyo Press Tokyo · Zbl 0566.46041
[27] Karatzas, I.; Shreve, S. E., Brownian Motion and Stochastic Calculus (1985), Springer-Verlag: Springer-Verlag Berlin/New York
[28] Kirillov, A. A., Lectures on affine Hecke algebras and Macdonald conjectures, Bull. Amer. Math. Soc., 34, 251-292 (1997) · Zbl 0884.05100
[29] Lapointe, L.; Vinet, L., Exact operator solution of the Calogero-Sutherland model, Comm. Math. Phys., 178, 425-452 (1996) · Zbl 0859.35103
[30] Lassalle, M., Polynômes de Hermite généralisés, C. R. Acad. Sci. Paris, 313, 579-582 (1991) · Zbl 0748.33006
[31] Macdonald, I. G., The volume of a compact Lie group, Invent. Math., 56, 93-95 (1980) · Zbl 0426.22009
[32] Mehta, M. L., Random Matrices and Statistical Theory of Energy Levels (1967), Academic Press: Academic Press New York · Zbl 0925.60011
[33] Opdam, E. M., Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math., 85, 333-373 (1993) · Zbl 0778.33009
[34] Opdam, E. M., Harmonic analysis for certain representations of graded Hecke algebras, Acta Math., 175, 75-121 (1995) · Zbl 0836.43017
[35] Polychronakos, A. P., Exchange operator formalism for integrable systems of particles, Phys. Rev. Lett., 69, 703-705 (1992) · Zbl 0968.37521
[36] C. Rentzsch, M. Voit, Homogeneous Markov processes and Gaussian processes on hypergroups, 1997; C. Rentzsch, M. Voit, Homogeneous Markov processes and Gaussian processes on hypergroups, 1997 · Zbl 0976.60014
[37] Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion (1991), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0731.60002
[38] Roman, S., The Umbral Calculus (1984), Academic Press: Academic Press San Diego · Zbl 0536.33001
[39] Rösler, M., Bessel-type signed hypergroups on \(R\), Probability Measures on Groups and Related Structures XI, Proceedings, Oberwolfach, 1994 (1995), World Scientific: World Scientific Singapore · Zbl 0908.43005
[40] Rösler, M., Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys., 192, 519-542 (1998) · Zbl 0908.33005
[41] M. Rösler, Positivity of Dunkl’s intertwining operator, Duke Math. J.; M. Rösler, Positivity of Dunkl’s intertwining operator, Duke Math. J.
[42] M. Rösler, M. Voit, An uncertainty principle for Hankel transforms, Proc. Amer. Math. Soc.; M. Rösler, M. Voit, An uncertainty principle for Hankel transforms, Proc. Amer. Math. Soc. · Zbl 0910.44003
[43] M. Rösler, M. Voit, Biorthogonal polynomials associated with reflection groups and a formula of Macdonald, J. Comput. Appl. Math.; M. Rösler, M. Voit, Biorthogonal polynomials associated with reflection groups and a formula of Macdonald, J. Comput. Appl. Math. · Zbl 0928.33012
[44] Rosenblum, M., Generalized Hermite polynomials and the Bose-like oscillator calculus, Operator Theory: Advances and Applications (1994), Birkhäuser Verlag: Birkhäuser Verlag Basel, p. 369-396 · Zbl 0826.33005
[45] Stout, W. F., Almost Sure Convergence (1989), Academic Press: Academic Press San Diego · Zbl 0165.52702
[46] Stroock, D.; Varadhan, S. R.S., Multidimensional Diffusion Processes (1979), Springer-Verlag: Springer-Verlag New York · Zbl 0426.60069
[47] Sutherland, B., Quantum many-body problem in one dimension, I, II, J. Math. Phys., 12, 246-250 (1971)
[48] Szegö, G., Orthogonal Polynomials (1959), Am. Math. Soc: Am. Math. Soc New York · JFM 65.0278.03
[49] Voit, M., A Lévy-characterization of one-dimensional diffusions, Arch. Math., 70, 235-238 (1998) · Zbl 0901.60050
[50] Watanabe, S., Sobolev type theorems for an operator with singularity, Proc. Amer. Math. Soc., 125, 129-136 (1997) · Zbl 0860.46025
[51] von Weizsäcker, H.; Winkler, G., Stochastic Integrals (1990), Vieweg: Vieweg Wiesbaden · Zbl 0718.60049
[52] Williams, D., Diffusions, Markov Processes, and Martingales (1979), Wiley: Wiley Chichester/New York · Zbl 0402.60003
[53] Xu, Y., Integration of the intertwining operator for \(h\), Proc. Amer. Math. Soc., 125, 2963-2973 (1997) · Zbl 0881.33010
[54] Yang, L. M., A note on the quantum rule of the harmonic oscillator, Phys. Rev., 84, 788-790 (1951) · Zbl 0043.41903
[55] Zeuner, Hm., Moment functions and laws of large numbers on hypergroups, Math. Z., 211, 369-407 (1992) · Zbl 0759.43003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.