×

On necessary and sufficient conditions for the real Jacobian conjecture. (English) Zbl 1529.58004

Summary: This paper is an expository one on necessary and sufficient conditions for the real Jacobian conjecture, which states that if \(F = \left(f^1, \dots, f^n\right): \mathbb{R}^n\rightarrow\mathbb{R}^n\) is a polynomial map such that \(\det DF\neq 0\), then \(F\) is a global injective. In Euclidean space \(\mathbb{R}^n\), the Hadamard’s theorem asserts that the polynomial map \(F\) with \(\det DF\neq 0\) is a global injective if and only if \(\|F(\mathbf{x})\|\) approaches to infinite as \(\|\mathbf{x}\|\rightarrow\infty\). The first part of this paper is to study the two-dimensional real Jacobian conjecture via Bendixson compactification, by which we provide a new version of M. Sabatini’s result [Nonlinear Anal., Theory Methods Appl. 34, No. 6, 829–838 (1998; Zbl 0949.34018)]. This version characterizes the global injectivity of polynomial map \(F\) by the local analysis of a singular point (at infinity) of a suitable vector field coming from the polynomial map \(F\). Moreover, applying the above results we present a dynamical proof of the two-dimensional Hadamard’s theorem. In the second part, we give an alternative proof of the A. Cima et al.’s result [Nonlinear Anal., Theory Methods Appl. 26, No. 4, 877–885 (1996; Zbl 0845.58014)] on the \(n\)-dimensional real Jacobian conjecture by the \(n\)-dimensional Hadamard’s theorem.

MSC:

58C25 Differentiable maps on manifolds
57R35 Differentiable mappings in differential topology
Full Text: DOI

References:

[1] Andronov, AA; Leontovich, EA; Gordon, II; Maĭer, AG, Qualitative Theory of Second-Order Dynamic Systems (1973), New York-Toronto, Ont: Halsted Press, New York-Toronto, Ont · Zbl 0282.34022
[2] Artés, JC; Braun, F.; Llibre, J., The phase portrait of the Hamiltonian system associated to a Pinchuk map, Anais da Academia Brasileira de Ciências, 90, 2599-2616 (2018) · Zbl 1419.37053 · doi:10.1590/0001-3765201820170829
[3] Bass, H.; Connell, EH; Wright, D., The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Am. Math. Soc. (N.S.),, 7, 287-330 (1982) · Zbl 0539.13012 · doi:10.1090/S0273-0979-1982-15032-7
[4] Braun, F.; dos Santos Filho, JR, The real Jacobian conjecture on \(\mathbb{R}^2\) is true when one of the components has degree 3, Discret. Contin. Dyn. Syst., 26, 75-87 (2010) · Zbl 1181.14067 · doi:10.3934/dcds.2010.26.75
[5] Braun, F.; Giné, J.; Llibre, J., A sufficient condition in order that the real Jacobian conjecture in \(\mathbb{R}^2\) holds, J. Differ. Equ., 260, 5250-5258 (2016) · Zbl 1332.14072 · doi:10.1016/j.jde.2015.12.011
[6] Braun, F.; Llibre, J., A new qualitative proof of a result on the real jacobian conjecture, Anais da Academia Brasileira de Ciências, 87, 1519-1524 (2015) · Zbl 1332.14073 · doi:10.1590/0001-3765201520130408
[7] Braun, F., Llibre, J.: On the Connection Between Global Centers and Global Injectivity in the Plane. Differ. Equ. Dyn. Syst. (2023)
[8] Braun, F.; Oréfice-Okamoto, B., On polynomial submersions of degree 4 and the real Jacobian conjecture in \(\mathbb{R}^2\), J. Math. Anal. Appl., 443, 688-706 (2016) · Zbl 1347.14011 · doi:10.1016/j.jmaa.2016.05.048
[9] Cima, A., Gasull, A., Llibre, J., Mañosas, F.: Global injectivity of polynomial maps via vector fields. In: Automorphisms of Affine Spaces, pp. 105-123. Springer, Dordrecht (1995) · Zbl 0834.58006
[10] Cima, A.; Gasull, A.; Mañosas, F., Injectivity of polynomial local homeomorphisms of \({ R}^n\), Nonlinear Anal., 26, 877-885 (1996) · Zbl 0845.58014 · doi:10.1016/0362-546X(94)00328-F
[11] Cobo, M.; Gutierrez, C.; Llibre, J., On the injectivity of \(C^1\) maps of the real plane, Canad. J. Math., 54, 1187-1201 (2002) · Zbl 1013.37015 · doi:10.4153/CJM-2002-045-0
[12] de Goursac, A.; Sportiello, A.; Tanasa, A., The Jacobian conjecture, a reduction of the degree to the quadratic case, Ann. Henri Poincaré, 17, 3237-3254 (2016) · Zbl 1355.14037 · doi:10.1007/s00023-016-0490-9
[13] Deimling, K., Nonlinear Functional Analysis (1985), Berlin: Springer-Verlag, Berlin · Zbl 0559.47040 · doi:10.1007/978-3-662-00547-7
[14] Drużkowski, LM, An effective approach to Keller’s Jacobian conjecture, Math. Ann., 264, 303-313 (1983) · Zbl 0504.13006 · doi:10.1007/BF01459126
[15] Dubouloz, A.; Palka, K., The Jacobian conjecture fails for pseudo-planes, Adv. Math., 339, 248-284 (2018) · Zbl 1403.14096 · doi:10.1016/j.aim.2018.09.020
[16] Dumortier, F., Llibre, J., Artés, J.: Qualitative Theory of Planar Differential Systems, Springer (2006) · Zbl 1110.34002
[17] Fernandes, A.; Gutierrez, C.; Rabanal, R., Global asymptotic stability for differentiable vector fields of \(\mathbb{R}^2\), J. Differ. Equ., 206, 470-482 (2004) · Zbl 1126.37306 · doi:10.1016/j.jde.2004.04.015
[18] Giné, J.; Llibre, J., A new sufficient condition in order that the real Jacobian conjecture in \(\mathbb{R}^2\) holds, J. Differ. Equ., 281, 333-340 (2021) · Zbl 1459.14023 · doi:10.1016/j.jde.2021.01.038
[19] Gwoździewicz, J., The real Jacobian conjecture for polynomials of degree 3, Ann. Polon. Math., 76, 121-125 (2001) · Zbl 0990.14023 · doi:10.4064/ap76-1-12
[20] Hartman, P.: Ordinary differential equations, vol. 38 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002) · Zbl 1009.34001
[21] Itikawa, J.; Llibre, J., New classes of polynomial maps satisfying the real jacobian conjecture in \({\mathbb{R} }^2\), Anais da Academia Brasileira de Ciências, 91, e20170627 (2019) · Zbl 1442.14190 · doi:10.1590/0001-3765201920170627
[22] Jȩdrzejewicz, P.; Zieliński, J., An approach to the Jacobian conjecture in terms of irreducibility and square-freeness, Eur. J. Math., 3, 199-207 (2017) · Zbl 1387.13044 · doi:10.1007/s40879-017-0145-5
[23] Lefschetz, S.: Differential equations: geometric theory. Second Edition. In: Pure and Applied Mathematics, Vol. VI, Interscience Publishers, New York-Lond on (1963) · Zbl 0107.07101
[24] Llibre, J.; Valls, C., A sufficient condition for the real jacobian conjecture in \({\mathbb{R} }^2\), Nonlinear Anal. Real World Appl., 60 (2021) · Zbl 1467.37024 · doi:10.1016/j.nonrwa.2021.103298
[25] Mazzi, L.; Sabatini, M., A characterization of centres via first integrals, J. Differ. Equ., 76, 222-237 (1988) · Zbl 0667.34036 · doi:10.1016/0022-0396(88)90072-1
[26] Pascoe, JE, The inverse function theorem and the Jacobian conjecture for free analysis, Math. Z., 278, 987-994 (2014) · Zbl 1320.46049 · doi:10.1007/s00209-014-1342-2
[27] Pinchuk, S., A counterexample to the strong real Jacobian conjecture, Math. Z., 217, 1-4 (1994) · Zbl 0874.26008 · doi:10.1007/BF02571929
[28] Plastock, R., Homeomorphisms between Banach spaces, Trans. Am. Math. Soc., 200, 169-183 (1974) · Zbl 0291.54009 · doi:10.1090/S0002-9947-1974-0356122-6
[29] Randall, J.D.: The real Jacobian problem, in Singularities, Part 2 (Arcata, Calif.,: vol. 40 of Proc. Sympos. Pure Math. Providence, RI 1983, pp. 411-414 (1981) · Zbl 0524.26009
[30] Rusek, K., A geometric approach to Keller’s Jacobian conjecture, Math. Ann., 264, 315-320 (1983) · Zbl 0527.14014 · doi:10.1007/BF01459127
[31] Ruzhansky, M.; Sugimoto, M., On global inversion of homogeneous maps, Bull. Math. Sci., 5, 13-18 (2015) · Zbl 1317.26012 · doi:10.1007/s13373-014-0059-1
[32] Sabatini, M., A connection between isochronous Hamiltonian centres and the Jacobian conjecture, Nonlinear Anal., 34, 829-838 (1998) · Zbl 0949.34018 · doi:10.1016/S0362-546X(97)00604-4
[33] Shpilrain, V.; Yu, J-T, Polynomial retracts and the Jacobian conjecture, Trans. Am. Math. Soc., 352, 477-484 (2000) · Zbl 0944.13011 · doi:10.1090/S0002-9947-99-02251-5
[34] Smale, S., Mathematical problems for the next century, Math. Intell., 20, 7-15 (1998) · Zbl 0947.01011 · doi:10.1007/BF03025291
[35] van den Essen, A.: Polynomial automorphisms and the Jacobian conjecture. In: Progress in Mathematics, vol. 190. Birkhäuser Verlag, Basel (2000) · Zbl 0962.14037
[36] Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos, vol. 2, Springer-Verlag, New York, second ed. (2003) · Zbl 1027.37002
[37] Zhang, X.: Integrability of Dynamical Systems: Algebra and Analysis, vol. 47, Springer (2017) · Zbl 1373.37053
[38] Zhang, Z. F., Ding, T. R., Huang, W. Z., Dong, Z. X.: Qualitative theory of differential equations. Vol. 101 of Transl. Math. Monographs, Am. Math. Soc, Providence, RI (1992) · Zbl 0779.34001
[39] Zhao, W., Hessian nilpotent polynomials and the Jacobian conjecture, Trans. Am. Math. Soc., 359, 249-274 (2007) · Zbl 1109.14041 · doi:10.1090/S0002-9947-06-03898-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.