×

Orientation mixing in active suspensions. (English) Zbl 1529.35372

Summary: We study a popular kinetic model introduced by D. Saintillan and M. J. Shelley [Phys. Fluids 20, No. 12, Paper No. 123304, 16 p. (2008; Zbl 1182.76654)] for the dynamics of suspensions of active elongated particles where the particles are described by a distribution in space and orientation. The uniform distribution of particles is the stationary state of incoherence which is known to exhibit a phase transition. We perform an extensive study of the linearised evolution around the incoherent state. We show (i) in the non-diffusive regime corresponding to spectral (neutral) stability that the suspensions experience a mixing phenomenon similar to Landau damping and we provide optimal pointwise in time decay rates in weak topology. Further, we show (ii) in the case of small rotational diffusion \(\nu\) that the mixing estimates persist up to time scale \(\nu^{-1/2}\) until the exponential decay at enhanced dissipation rate \(\nu^{1/2}\) takes over. The interesting feature is that the usual velocity variable of kinetic models is replaced by an orientation variable on the sphere. The associated orientation mixing leads to limited algebraic decay for macroscopic quantities. For the proof, we start with a general pointwise decay result for Volterra equations that may be of independent interest. While, in the non-diffusive case, explicit formulas on the sphere allow to conclude the desired decay, much more work is required in the diffusive case: here we prove mixing estimates for the advection-diffusion equation on the sphere by combining an optimized hypocoercive approach with the vector field method. One main point in this context is to identify good commuting vector fields for the advection-diffusion operator on the sphere. Our results in this direction may be useful to other models in collective dynamics, where an orientation variable is involved.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q49 Transport equations
76D07 Stokes and related (Oseen, etc.) flows
76T20 Suspensions
35B40 Asymptotic behavior of solutions to PDEs
35B35 Stability in context of PDEs
45D05 Volterra integral equations
60J65 Brownian motion

Citations:

Zbl 1182.76654

References:

[1] Albritton, D., Ohm, L.: On the stabilizing effect of swimming in an active suspension. arXiv e-prints, May (2022) · Zbl 1527.35256
[2] Bedrossian, J.: Suppression of plasma echoes and Landau damping in Sobolev spaces by weak collisions in a Vlasov-Fokker-Planck equation. Ann. PDE, 3(2):Paper No. 19, 66, (2017) · Zbl 1397.35024
[3] Bedrossian, J., Coti Zelati, M.: Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. Arch. Ration. Mech. Anal., 224(3):1161-1204, (2017) · Zbl 1371.35213
[4] Benedetto, D.; Caglioti, E.; Montemagno, U., Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162, 4, 813-823 (2016) · Zbl 1339.35328 · doi:10.1007/s10955-015-1426-3
[5] Chaturvedi, S., Luk, J., Nguyen, T. T.: The Vlasov-Poisson-Landau system in the weakly collisional regime. arXiv e-prints, Apr. (2021)
[6] Chen, X.; Liu, J-G, Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Differential Equations, 254, 7, 2764-2802 (2013) · Zbl 1260.35231 · doi:10.1016/j.jde.2013.01.005
[7] Chiba, H., A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory Dynam. Systems, 35, 3, 762-834 (2015) · Zbl 1322.37036 · doi:10.1017/etds.2013.68
[8] Choi, J.: The method of stationary phase. Available at http://www.math.uchicago.edu/ may/VIGRE/VIGREREU2011.html, (2011)
[9] Constantin, P., Nonlinear Fokker-Planck Navier-Stokes systems, Commun. Math. Sci., 3, 4, 531-544 (2005) · Zbl 1110.35057 · doi:10.4310/CMS.2005.v3.n4.a4
[10] Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion and mixing in fluid flow. Ann. of Math. (2), 168(2):643-674, (2008) · Zbl 1180.35084
[11] Coti Zelati, M.: Stable mixing estimates in the infinite Péclet number limit. J. Funct. Anal., 279(4):108562, 25, (2020) · Zbl 1445.35056
[12] Coti Zelati, M., Delgadino, M. G., Elgindi, T. M.: On the relation between enhanced dissipation timescales and mixing rates. Comm. Pure Appl. Math., 73(6):1205-1244, (2020) · Zbl 1444.76098
[13] Coti Zelati, M., Gallay, T.: Enhanced dissipation and Taylor dispersion in higher-dimensional parallel shear flows. arXiv e-prints, Aug. (2021)
[14] Del Zotto, A.: Enhanced Dissipation and Transition Threshold for the Poiseuille Flow in a Periodic Strip. arXiv e-prints, Aug. (2021) · Zbl 1525.35186
[15] Dietert, H.: Stability and bifurcation for the Kuramoto model. J. Math. Pures Appl. (9), 105(4):451-489, (2016) · Zbl 1339.35318
[16] Dietert, H., Fernandez, B.: The mathematics of asymptotic stability in the Kuramoto model. Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci., 474(2220):20, 2018. Id/No 20180467 · Zbl 1425.35206
[17] Dietert, H.; Fernandez, B.; Gérard-Varet, D., Landau damping to partially locked states in the Kuramoto model, Commun. Pure Appl. Math., 71, 5, 953-993 (2018) · Zbl 1392.34034 · doi:10.1002/cpa.21741
[18] Doi, M., Edwards, S.: The Theory of Polymer Dynamics, volume 73 of International series of monographs on physics, Oxford science publications. Clarendon Press, (1988)
[19] Faou, E.; Horsin, R.; Rousset, F., On linear damping around inhomogeneous stationary states of the Vlasov-HMF model, J. Dyn. Differ. Equations, 33, 3, 1531-1577 (2021) · Zbl 1512.35578 · doi:10.1007/s10884-021-10044-y
[20] Fernandez, B.; Gérard-Varet, D.; Giacomin, G., Landau damping in the Kuramoto model, Ann. Henri Poincaré, 17, 7, 1793-1823 (2016) · Zbl 1347.34052 · doi:10.1007/s00023-015-0450-9
[21] Gripenberg,G., Londen, S.-O., Staffans, O.: Volterra integral and functional equations, volume 34 of Encycl. Math. Appl. Cambridge etc.: Cambridge University Press, (1990) · Zbl 0695.45002
[22] Guo, Y., The Landau equation in a periodic box, Commun. Math. Phys., 231, 3, 391-434 (2002) · Zbl 1042.76053 · doi:10.1007/s00220-002-0729-9
[23] Hohenegger, C., Shelley, M. J.: Stability of active suspensions. Phys. Rev. E (3), 81(4):046311, 10, (2010)
[24] Jeffery, G. B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond., Ser. A, 102:161-179, (1922) · JFM 49.0748.02
[25] Klainerman, S., Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38, 3, 321-332 (1985) · Zbl 0635.35059 · doi:10.1002/cpa.3160380305
[26] Landau, L.: On the vibrations of the electronic plasma. Acad. Sci. USSR, J. Phys., 10:25-34, (1946) · Zbl 0063.03439
[27] Lee, J. M.: Introduction to Riemannian manifolds, volume 176 of Graduate Texts in Mathematics. Springer, Cham, (2018). Second edition of [MR1468735] · Zbl 1409.53001
[28] Li, H.; Zhao, W., Metastability for the dissipative quasi-geostrophic equation and the non-local enhancement, Comm. Math. Phys., 401, 2, 1383-1415 (2023) · Zbl 1530.35223 · doi:10.1007/s00220-023-04671-3
[29] Miles, CJ; Doering, CR, Diffusion-limited mixing by incompressible flows, Nonlinearity, 31, 5, 2346-2350 (2018) · Zbl 1390.76840 · doi:10.1088/1361-6544/aab1c8
[30] Mouhot, C.; Villani, C., On Landau damping, Acta Math., 207, 1, 29-201 (2011) · Zbl 1239.82017 · doi:10.1007/s11511-011-0068-9
[31] Ohm, L., Shelley, M. J.: Weakly nonlinear analysis of pattern formation in active suspensions. J. Fluid Mech., 942:Paper No. A53, 41, (2022) · Zbl 1494.76133
[32] Otto, F.; Tzavaras, AE, Continuity of velocity gradients in suspensions of rod-like molecules, Comm. Math. Phys., 277, 3, 729-758 (2008) · Zbl 1158.76051 · doi:10.1007/s00220-007-0373-5
[33] Penrose, O., Electrostatic instabilities of a uniform non-Maxwellian plasma, Phys. Fluids, 3, 258-265 (1960) · Zbl 0090.22801 · doi:10.1063/1.1706024
[34] Petersen, P.: Riemannian geometry, volume 171 of Graduate Texts in Mathematics. Springer, Cham, third edition, (2016) · Zbl 1417.53001
[35] Saintillan, D.: Rheology of active fluids. In Annual review of fluid mechanics. Vol. 50, pages 563-592. Palo Alto, CA: Annual Reviews, (2018) · Zbl 1384.76057
[36] Saintillan, D., Shelley, M. J.: Instabilities, pattern formation, and mixing in active suspensions. Phys. Fluids, 20(12):16, (2008). Id/No 123304 · Zbl 1182.76654
[37] Strogatz, SH; Mirollo, RE; Matthews, PC, Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping, Phys. Rev. Lett., 68, 18, 2730-2733 (1992) · Zbl 0969.92501 · doi:10.1103/PhysRevLett.68.2730
[38] Taylor, G. I.: The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond., Ser. A, 103:58-61, (1923) · JFM 49.0747.01
[39] Villani, C.: Hypocoercivity, volume 950 of Mem. Am. Math. Soc. Providence, RI: American Mathematical Society (AMS), (2009) · Zbl 1197.35004
[40] Wei, D.; Zhang, Z., Enhanced dissipation for the Kolmogorov flow via the hypocoercivity method, Sci. China Math., 62, 6, 1219-1232 (2019) · Zbl 1420.35266 · doi:10.1007/s11425-018-9508-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.