×

On the stabilizing effect of swimming in an active suspension. (English) Zbl 1527.35256

Summary: We consider a kinetic model of an active suspension of rodlike microswimmers. In certain regimes, swimming has a stabilizing effect on the suspension. We quantify this effect near homogeneous isotropic equilibria \(\overline{\psi} = \mathrm{const}\). Notably, in the absence of particle (translational and orientational) diffusion, swimming is the only stabilizing mechanism. On the torus, in the nondiffusive regime, we demonstrate linear Landau damping up to the stability threshold predicted in the applied literature. With small diffusion, we demonstrate nonlinear stability of arbitrary equilibrium values for pullers (front-actuated swimmers) and enhanced dissipation for both pullers and pushers (rear-actuated swimmers) at small concentrations. On the whole space, we prove nonlinear stability of the vacuum equilibrium due to generalized Taylor dispersion.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q92 PDEs in connection with biology, chemistry and other natural sciences
76Z10 Biopropulsion in water and in air
92C17 Cell movement (chemotaxis, etc.)
76T20 Suspensions
76E30 Nonlinear effects in hydrodynamic stability

References:

[1] Albritton, D., Beekie, R., and Novack, M., Enhanced dissipation and Hörmander’s hypoellipticity, J. Funct. Anal., 283 (2022), 109522, doi:10.1016/j.jfa.2022.109522. · Zbl 1489.35021
[2] Aris, R., On the dispersion of a solute in a fluid flowing through a tube, Proc. A, 235 (1956), pp. 67-77.
[3] Bae, H. and Trivisa, K., On the Doi model for the suspensions of rod-like molecules: Global-in-time existence, Commun. Math. Sci., 11 (2013), pp. 831-850, doi:10.4310/CMS.2013.v11.n3.a8. · Zbl 1280.35085
[4] Bahouri, H., Chemin, J.-Y., and Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations, , Springer, Heidelberg, 2011, doi:10.1007/978-3-642-16830-7. · Zbl 1227.35004
[5] Beck, M., Chaudhary, O., and Wayne, C. E., Rigorous justification of Taylor dispersion via center manifolds and hypocoercivity, Arch. Ration. Mech. Anal., 235 (2020), pp. 1105-1149, doi:10.1007/s00205-019-01440-2. · Zbl 1434.35085
[6] Beck, M. and Wayne, C. E., Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), pp. 905-927, doi:10.1017/S0308210511001478. · Zbl 1296.35114
[7] Bedrossian, J. and Coti Zelati, M., Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows, Arch. Ration. Mech. Anal., 224 (2017), pp. 1161-1204, doi:10.1007/s00205-017-1099-y. · Zbl 1371.35213
[8] Bedrossian, J. and Masmoudi, N., Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations, Publ. Math. Inst. Hautes Études Sci., 122 (2015), pp. 195-300, doi:10.1007/s10240-015-0070-4. · Zbl 1375.35340
[9] Bedrossian, J., Masmoudi, N., and Mouhot, C., Landau damping: Paraproducts and Gevrey regularity, Ann. PDE, 2 (2016), 4, doi:10.1007/s40818-016-0008-2. · Zbl 1402.35058
[10] Bedrossian, J., Masmoudi, N., and Vicol, V., Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the two dimensional Couette flow, Arch. Ration. Mech. Anal., 219 (2016), pp. 1087-1159, doi:10.1007/s00205-015-0917-3. · Zbl 1339.35208
[11] Bedrossian, J. and Wang, F., The linearized Vlasov and Vlasov-Fokker-Planck equations in a uniform magnetic field, J. Stat. Phys., 178 (2019), pp. 552-594, doi:10.1007/s10955-019-02441-x. · Zbl 1434.35228
[12] Chaturvedi, S., Luk, J., and Nguyen, T. T., The Vlasov-Poisson-Landau system in the weakly collisional regime, J. Amer. Math. Soc., 36 (2023), pp. 1103-1189. · Zbl 1522.35505
[13] Chen, X., Li, X., and Liu, J.-G., Existence and uniqueness of global weak solution to a kinetic model for the sedimentation of rod-like particles, Commun. Math. Sci., 12 (2014), pp. 1579-1601. · Zbl 1311.35184
[14] Chen, X. and Liu, J.-G., Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Differential Equations, 254 (2013), pp. 2764-2802. · Zbl 1260.35231
[15] Constantin, P., Fefferman, C., Titi, E., and Zarnescu, A., Regularity of coupled two-dimensional nonlinear Fokker-Planck and Navier-Stokes systems, Commun. Math. Phys., 270 (2007), pp. 789-811. · Zbl 1123.35043
[16] Constantin, P. and Masmoudi, N., Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2d, Commun. Math. Phys., 278 (2008), pp. 179-191. · Zbl 1147.35069
[17] Constantin, P. and Seregin, G., Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations, Discrete Contin. Dyn. Syst., 26 (2010), pp. 1185-1196. · Zbl 1191.35084
[18] Coti Zelati, M., Dietert, H., and Gérard-Varet, D., Orientation Mixing in Active Suspensions, preprint, arXiv:2207.08431, 2022.
[19] Coti Zelati, M. and Drivas, T. D., A stochastic approach to enhanced diffusion, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XXII (2021), pp. 811-834, doi:10.2422/2036-2145.201911_013. · Zbl 1491.35351
[20] Coti Zelati, M., Elgindi, T. M., and Widmayer, K., Enhanced dissipation in the Navier-Stokes equations near the Poiseuille flow, Comm. Math. Phys., 378 (2020), pp. 987-1010, doi:10.1007/s00220-020-03814-0. · Zbl 1446.35095
[21] Doi, M., Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, J. Polym. Sci. B, 19 (1981), pp. 229-243.
[22] Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics, , Oxford University Press, Oxford, 1986.
[23] Frankel, I. and Brenner, H., On the foundations of generalized Taylor dispersion theory, J. Fluid Mech., 204 (1989), pp. 97-119. · Zbl 0687.76086
[24] Zelati, M. Coti and Gallay, T., Enhanced dissipation and Taylor dispersion in higher-dimensional parallel shear flows, J. London. Math. Soc., (2023), doi:10.1112/jlms.12782. · Zbl 1527.35270
[25] Grenier, E., Nguyen, T. T., and Rodnianski, I., Landau damping for analytic and Gevrey data, Math. Res. Lett., 28 (2021), pp. 1679-1702. · Zbl 1496.35080
[26] Guo, Y., The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), pp. 391-434, doi:10.1007/s00220-002-0729-9. · Zbl 1042.76053
[27] Hohenegger, C. and Shelley, M. J., Stability of active suspensions, Phys. Rev. E (3), 81 (2010), 046311.
[28] Jeffery, G. B., The motion of ellipsoidal particles immersed in a viscous fluid, Proc. A, 102 (1922), pp. 161-179. · JFM 49.0748.02
[29] Jiang, N., Luo, Y.-L., and Zhang, T.-F., Coupled self-organized hydrodynamics and Navier-Stokes models: Local well-posedness and the limit from the self-organized kinetic-fluid models, Arch. Ration. Mech. Anal., 236 (2020), pp. 329-387. · Zbl 1448.76052
[30] Kanzler, L. and Schmeiser, C., Kinetic model for myxobacteria with directional diffusion, Commun. Math. Sci., 21 (2023), pp. 107-126. · Zbl 1518.35052
[31] Koch, D. L. and Subramanian, G., Collective hydrodynamics of swimming microorganisms: Living fluids, Annu. Rev. Fluid Mech., 43 (2011), pp. 637-659. · Zbl 1299.76320
[32] La, J., Global well-posedness of strong solutions of Doi model with large viscous stress, J. Nonlinear Sci., 29 (2019), pp. 1891-1917. · Zbl 1428.35368
[33] La, J., On diffusive 2d Fokker-Planck-Navier-Stokes systems, Arch. Ration. Mech. Anal., 235 (2020), pp. 1531-1588. · Zbl 1461.76027
[34] Lauga, E., The Fluid Dynamics of Cell Motility, , Cambridge University Press, Cambridge, 2020. · Zbl 1451.92001
[35] Lions, P.-L. and Masmoudi, N., Global existence of weak solutions to some micro-macro models, C. R. Math., 345 (2007), pp. 15-20. · Zbl 1117.35312
[36] Manela, A. and Frankel, I., Generalized Taylor dispersion in suspensions of gyrotactic swimming micro-organisms, J. Fluid Mech., 490 (2003), pp. 99-127. · Zbl 1063.76691
[37] Masmoudi, N., Equations for polymeric materials, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, Switzerland, 2018, pp. 973-1005.
[38] Masmoudi, N., Zhang, P., and Zhang, Z., Global well-posedness for 2d polymeric fluid models and growth estimate, Phys. D, 237 (2008), pp. 1663-1675. · Zbl 1143.76356
[39] Mouhot, C. and Villani, C., On Landau damping, Acta Math., 207 (2011), pp. 29-201, doi:10.1007/s11511-011-0068-9. · Zbl 1239.82017
[40] Ohm, L. and Shelley, M. J., Weakly nonlinear analysis of pattern formation in active suspensions, J. Fluid Mech., 942 (2022), doi:10.1017/jfm.2022.392. · Zbl 1494.76133
[41] Otto, F. and Tzavaras, A. E., Continuity of velocity gradients in suspensions of rod-like molecules, Comm. Math. Phys., 277 (2008), pp. 729-758. · Zbl 1158.76051
[42] Rudin, W., Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987. · Zbl 0925.00005
[43] Saintillan, D. and Shelley, M. J., Orientational order and instabilities in suspensions of self-locomoting rods, Phys. Rev. Lett., 99 (2007), 058102.
[44] Saintillan, D. and Shelley, M. J., Instabilities and pattern formation in active particle suspensions: Kinetic theory and continuum simulations, Phys. Rev. Lett., 100 (2008), 178103. · Zbl 1182.76654
[45] Saintillan, D. and Shelley, M. J., Instabilities, pattern formation, and mixing in active suspensions, Phys. Fluids, 20 (2008), 123304. · Zbl 1182.76654
[46] Saintillan, D. and Shelley, M. J., Emergence of coherent structures and large-scale flows in motile suspensions, J. R. Soc. Interface, 9 (2012), pp. 571-585.
[47] Saintillan, D. and Shelley, M. J., Active suspensions and their nonlinear models, C. R. Phys., 14 (2013), pp. 497-517.
[48] Saintillan, D. and Shelley, M. J., Theory of active suspensions, in Complex Fluids in Biological Systems, Springer, New York, 2015, pp. 319-355.
[49] Sieber, O., Existence of global weak solutions to an inhomogeneous Doi model for active liquid crystals, J. Differential Equations, 354 (2023), pp. 1-48. · Zbl 1509.35243
[50] Škultéty, V., Nardini, C., Stenhammar, J., Marenduzzo, D., and Morozov, A., Swimming suppresses correlations in dilute suspensions of pusher microorganisms, Phys. Rev. X, 10 (2020), 031059.
[51] Stein, E. M. and Murphy, T. S., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, , Princeton University Press, Princeton, NJ, 1993. · Zbl 0821.42001
[52] Subramanian, G. and Koch, D. L., Critical bacterial concentration for the onset of collective swimming, J. Fluid Mech., 632 (2009), pp. 359-400. · Zbl 1183.76943
[53] Subramanian, G., Koch, D. L., and Fitzgibbon, S. R., The stability of a homogeneous suspension of chemotactic bacteria, Phys. Fluids, 23 (2011), 041901.
[54] Sun, Y. and Zhang, Z., Global well-posedness for the 2d micro-macro models in the bounded domain, Comm. Math. Phys., 303 (2011), pp. 361-383. · Zbl 1216.35091
[55] Taylor, G. I., The dispersion of matter in turbulent flow through a pipe, Proc. A, 223 (1954), pp. 446-468.
[56] Villani, C., et al., Landau Damping, , CEMRACS, Marseille, France, 2010.
[57] Wei, D., Diffusion and mixing in fluid flow via the resolvent estimate, Sci. China Math., 64 (2021), pp. 507-518, doi:10.1007/s11425-018-9461-8. · Zbl 1464.35260
[58] Wei, D. and Zhang, Z., Enhanced dissipation for the Kolmogorov flow via the hypocoercivity method, Sci. China Math., 62 (2019), pp. 1219-1232, doi:10.1007/s11425-018-9508-5. · Zbl 1420.35266
[59] Zhang, H. and Zhang, P., On the new multiscale rodlike model of polymeric fluids, SIAM J. Math. Anal., 40 (2008), pp. 1246-1271. · Zbl 1162.76009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.