×

2D/3D fully decoupled, unconditionally energy stable rotational velocity projection method for incompressible MHD system. (English) Zbl 1528.76057

Summary: The first order linear, fully decoupled rotational velocity projection scheme for settling 2D/3D incompressible magneto-hydrodynamic system is considered in this paper. The considered governing model is a strong nonlinear system and also a double saddle points system. The proposed scheme mainly apply the first order Euler semi implicit scheme for temporal discretization, delicate implicit-explicit treatments for handling the strong nonlinear terms, and the mixed finite element method is used for spatial discretization. Then the system can be transformed into a series of linear elliptic equations such that the all variables are fully decoupled. More importantly, the existence of rotational term in the proposed algorithm makes the theoretical analysis quite difficult to carry out. Therefore, with the help of a Gauge-Uzawa form that we derive the unconditional energy stability. The results of 2D/3D numerical simulations are proved compact with the theoretical analysis.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Priest, ER; Hood, AW, Advances in Solar System Magnetohydrodynamics (1991), Cambridge: Cambridge University Press, Cambridge
[2] Davidson, PA; Belova, EV, An introduction to magnetohydrodynamics, Am. J. Phys., 70, 7, 781-784 (2002) · doi:10.1119/1.1482065
[3] Davidson, PA, An introduction to magnetohydrodynamics by P. A. Davidson, SIAM Rev., 44, 3, 511-513 (2002)
[4] Stupelis, L., An initial boundary-value problem for a system of equations of magnetohydrodynamics, Lith. Math. J., 40, 2, 176-196 (2000) · Zbl 0988.76099 · doi:10.1007/BF02467157
[5] Olshanskii, MA; Reusken, A., Grad-div stablilization for Stokes equations, Math. Comput., 73, 248, 1699-1718 (2004) · Zbl 1051.65103 · doi:10.1090/S0025-5718-03-01629-6
[6] Schötzau, D., Mixed finite element methods for stationary incompressible magnetohydrodynamics, Numer. Math., 96, 4, 771-800 (2004) · Zbl 1098.76043 · doi:10.1007/s00211-003-0487-4
[7] Qiu, W.; Shi, K., Analysis of a semi-implicit structure-preserving finite element method for the nonstationary incompressible magnetohydrodynamics equations, Comput. Math. Appl., 80, 2150-2161 (2020) · Zbl 1452.76100 · doi:10.1016/j.camwa.2020.09.003
[8] Li, Y.; Luo, X., Second-order semi-implicit Crank-Nicolson scheme for a coupled magnetohydrodynamics system, Appl. Numer. Math., 145, 48-68 (2019) · Zbl 1448.76194 · doi:10.1016/j.apnum.2019.06.001
[9] Verardi, SLL; Cardoso, JR; Costa, MC, Three-dimensional finite element analysis of MHD duct flow by the penalty function formulation, IEEE Trans. Magn., 37, 5, 3384-3387 (2001) · doi:10.1109/20.952619
[10] Su, HY; Feng, XL; Huang, PZ, Iterative methods in penalty finite element discretization for the steady MHD equations, Comput Methods Appl. Mech., 304, 521-545 (2016) · Zbl 1423.76281 · doi:10.1016/j.cma.2016.02.039
[11] Su, HY; Feng, XL; Zhao, JP, On two-level Oseen penalty iteration methods for the 2D/3D stationary incompressible magnetohydronamics, J. Sci. Comput., 83, 11 (2020) · Zbl 1436.65190 · doi:10.1007/s10915-020-01186-0
[12] Yalim, MS; Abeele, DV; Lani, A., Simulation of Field-Aligned Ideal MHD Flows Around Perfectly Conducting Cylinders Using an Artificial Compressibility Approach (2008), Berlin: Springer, Berlin · Zbl 1372.76114 · doi:10.1007/978-3-540-75712-2_116
[13] Donatelli, D., The artificial compressibility approximation for MHD equations in unbounded domain, J. Hyperbol. Differ. Equ., 10, 1, 181-198 (2013) · Zbl 1277.35249 · doi:10.1142/S0219891613500082
[14] Prohl, A., Stationary Quasi-Compressibility Methods: The Penalty Method and the Pressure Stabilization Method (1997), Vieweg+Teubner Verlag · Zbl 0874.76002
[15] Guermond, JL; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Method Appl. Mech., 195, 44-47, 6011-6045 (2006) · Zbl 1122.76072 · doi:10.1016/j.cma.2005.10.010
[16] Kan, JV, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Stat. Comput., 7, 3, 870-891 (1986) · Zbl 0594.76023 · doi:10.1137/0907059
[17] Guermond, JL; Shen, J., Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 41, 1, 112-134 (2003) · Zbl 1130.76395 · doi:10.1137/S0036142901395400
[18] Guermond, JL; Shen, J., A new class of truly consistent splitting schemes for incompressible flows, J. Comput. Phys., 192, 1, 262-276 (2003) · Zbl 1032.76529 · doi:10.1016/j.jcp.2003.07.009
[19] Liu, QF; Hou, YR; Wang, ZH; Zhao, JK, Two-level consistent splitting methods based on three corrections for the time-dependent Navier-Stokes equations, Int. J. Numer. Methods. Fluids, 80, 7, 429-450 (2016) · doi:10.1002/fld.4087
[20] Choi, H.; Shen, J., Efficient splitting schemes for magneto-hydrodynamic equations, Sci. China Math., 59, 8, 1495-1510 (2016) · Zbl 1388.76224 · doi:10.1007/s11425-016-0280-5
[21] Zhang, GD; He, XM; Yang, XF, Fully decoupled, linear and unconditionally energy stable time discretization scheme for solving the magneto-hydrodynamic equations, J. Comput. Appl. Math., 369 (2020) · Zbl 1447.65039 · doi:10.1016/j.cam.2019.112636
[22] Guan, JX; Jing, SJ; Si, ZY, A rotational velocity-correction projection method for unsteady incompressible magnetohydrodynamics equations, Comput. Math. Appl., 80, 5, 809-821 (2020) · Zbl 1447.65074 · doi:10.1016/j.camwa.2020.04.017
[23] Shen, XJ; Wang, YX; Si, ZY, A rotational pressure-correction projection methods for unsteady incompressible magnetohydrodynamics equations, Appl. Math. Comput., 387 (2020) · Zbl 1465.76057
[24] Costabel, M.; Dauge, M., Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math., 93, 239-277 (2002) · Zbl 1019.78009 · doi:10.1007/s002110100388
[25] Zhang, GD; He, YN; Yang, D., Analysis of coupling iterations based on the finite element method for stationary magnetohydrodynamics on a general domain, Comput. Math. Appl., 68, 7, 770-788 (2014) · Zbl 1362.76035 · doi:10.1016/j.camwa.2014.07.025
[26] Shen, J.; Yang, XF; Yu, HJ, Efficient energy stable numerical schemes for a phase field moving contact line model, J. Comput. Phys., 284, 617-630 (2015) · Zbl 1351.76184 · doi:10.1016/j.jcp.2014.12.046
[27] Shen, J.; Yang, XF, Decoupled, energy stable schemes for phase-field models of two-phase incompressible, SIAM J. Numer. Anal., 53, 1, 279-296 (2015) · Zbl 1327.65178 · doi:10.1137/140971154
[28] Minjeaud, S., An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model, Numer. Methods Part Differ. Equ., 29, 2, 584-618 (2013) · Zbl 1364.76091 · doi:10.1002/num.21721
[29] Boyer, F.; Minjeaud, S., Numerical schemes for a three component Cahn-Hilliard model, ESAIM Math. Model. Numer. Anal., 45, 4, 697-738 (2011) · Zbl 1267.76127 · doi:10.1051/m2an/2010072
[30] Shen, J.; Yang, XF, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32, 3, 1159-1179 (2010) · Zbl 1410.76464 · doi:10.1137/09075860X
[31] Zhao, J.; Li, HY; Wang, Q.; Yang, XF, Decoupled energy stable schemes for a phase field model of three-phase incompressible viscous fluid flow, J. Sci. Comput., 70, 3, 1367-1389 (2017) · Zbl 1397.76098 · doi:10.1007/s10915-016-0283-9
[32] Shen, J.; Yang, XF, Decoupled energy stable schemes for phase-field models of two-phase complex fluids, SIAM J. Sci. Comput., 36, 1, B122-B145 (2014) · Zbl 1288.76057 · doi:10.1137/130921593
[33] Liu, C.; Shen, J.; Yang, XF, Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density, J. Sci. Comput., 62, 2, 601-622 (2015) · Zbl 1326.76064 · doi:10.1007/s10915-014-9867-4
[34] Chen, F.; Shen, J., Stability and convergence analysis of rotational velocity correction methods for the Navier-Stokes equations, Adv. Comput. Math., 45, 3, 3123-3136 (2019) · Zbl 1435.65119 · doi:10.1007/s10444-019-09729-2
[35] Chen, Z.: Finite Element Methods and Their Applications (2005) · Zbl 1082.65118
[36] Su, H.; Zhang, GD, Highly efficient and energy stable schemes for the 2D/3D diffuse interface model of two-phase magnetohydrodynamics, J. Sci. Comput., 90, 1-31 (2022) · Zbl 07454946 · doi:10.1007/s10915-021-01741-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.