×

Analysis of a semi-implicit structure-preserving finite element method for the nonstationary incompressible magnetohydrodynamics equations. (English) Zbl 1452.76100

Summary: We revise the structure-preserving finite element method in [K. Hu et al., Numer. Math. 135, No. 2, 371–396 (2017; Zbl 1381.76174)]. The revised method is semi-implicit in time-discretization. We prove the linearized scheme preserves the divergence free property for the magnetic field exactly at each time step. Further, we showed the linearized scheme is unconditionally stable and we obtain optimal convergence in the energy norm of the revised method even for solutions with low regularity.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1381.76174

References:

[1] Abdou, M. A., On the exploration of innovative concepts for fusion chamber technology, Fusion Eng. Des., 54, 181-247 (2001)
[2] Gerbeau, J.; Le Bris, C.; Lelièvre, T., Mathematical Methods for the Magnetohydrodynamics of Liquid Metals (2006), Oxford University Press: Oxford University Press Oxford · Zbl 1107.76001
[3] Moreau, R., Magnetohydrodynamics (1990), Kluwer Academic Publishers: Kluwer Academic Publishers New York · Zbl 0714.76003
[4] Goedbloed, J.; Poedts, S., Principles of Magnetohydrodynamics with Applications To Laboratory and Astrophysical Plasmas (2004), Cambridge University Press: Cambridge University Press Cambridge, MA
[5] Sermane, M.; Temam, R., Some mathematics questions related to the MHD equations, Comm. Pure Appl. Math., XXXIV, 635-664 (1984) · Zbl 0524.76099
[6] Badia, S.; Codina, R.; Planas, R., On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics, J. Comput. Phys., 234, 399-416 (2013) · Zbl 1284.76248
[7] Baňas, L.; Prohl, A., Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations, Math. Comp., 79, 272, 1957-1999 (2010) · Zbl 1273.76264
[8] Codina, R.; Hernández, N., Approximation of the thermally coupled MHD problem using a stabilized finite element method, J. Comput. Phys., 230, 1281-1303 (2011) · Zbl 1391.76317
[9] Gao, H.; Qiu, W., A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations, Comput. Methods Appl. Mech. Engrg., 346, 982-1001 (2019) · Zbl 1440.76061
[10] He, Y., Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations, IMA J. Numer. Anal., 35, 2, 767-801 (2015) · Zbl 1312.76061
[11] Marioni, L.; Bay, F.; Hachem, E., Numerical stability analysis and flow simulation of lid-driven cavity subjected to high magnetic field, Phys. Fluids, 28, 57-102 (2016)
[12] Prohl, A., Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system, M2AN Math. Model. Numer. Anal., 42, 1065-1087 (2008) · Zbl 1149.76029
[13] Ni, M.-J.; Munipalli, R.; Huang, P.; Morley, N. B.; Abdou, M. A., A current density con- servative scheme for incompressible MHD flows at a low magnetic Reynolds number. part I. On a rectangular collocated grid system, J. Comput. Phys., 227, 174-204 (2007) · Zbl 1280.76045
[14] Ni, M.-J.; Munipalli, R.; Huang, P.; Morley, N. B.; Abdou, M. A., A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: On an arbitrary collocated mesh, J. Comput. Phys., 227, 205-228 (2007) · Zbl 1280.76044
[15] Xu, S.; Zhang, N.; Ni, M., Influence of flow channel insert with pressure equalization opening on MHD flows in a rectangular duct, Fusion Eng. Des., 88, 271-275 (2013)
[16] Zhang, J.; Ni, M., A consistent and conservative scheme for MHD flows with complex boundaries on an unstructured cartesian adaptive system, J. Comput. Phys., 256, 520-542 (2014) · Zbl 1349.76411
[17] Hiptmair, R.; Li, M.; Mao, S.; Zheng, W., A fully divergence-free finite element method for magnetohydrodynamic equations, Math. Models Methods Appl. Sci., 28, 659-695 (2018) · Zbl 1393.65031
[18] Hu, K.; Ma, Y.; Xu, J., Stable finite element methods preserving \(\nabla \cdot \mathbf{B} = 0\) exactly for MHD models, Numer. Math., 135, 371-396 (2017) · Zbl 1381.76174
[19] Ma, Y.; Xu, J.; Zhang, G., Error estimates for structure-preserving discretization of the incompressible MHD system (2016)
[20] Arnold, D. N.; Falk, R. S.; Winther, R., Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15, 1-155 (2006) · Zbl 1185.65204
[21] Arnold, D. N.; Falk, R. S.; Winther, R., Finite element exterior calculus: from hodge theory to numerical stability, Bull. Am. Math. Soc., 47, 2, 281-354 (2010) · Zbl 1207.65134
[22] Hu, K.; Xu, J., Structure-preserving finite element methods for stationary MHD models, Math. Comp., 88, 553-581 (2019) · Zbl 1405.65151
[23] Crouzeix, M.; Thomée, V., The stability in \(L_p\) and \(W_p^1\) of the \(L_2\)-projection onto finite element function spaces, Math. Comp., 48, 178, 521-532 (1987) · Zbl 0637.41034
[24] Nirenberg, L., An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa, 20, 3, 733-737 (1966) · Zbl 0163.29905
[25] Hiptmair, R., Finite elements in computational electromagnetism, Acta. Numer., 11, 237-339 (2002) · Zbl 1123.78320
[26] Monk, P., Finite Element Methods for Maxwell’S Equations (2003), Oxford University Press: Oxford University Press New York · Zbl 1024.78009
[27] Girault, V.; Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Vol. 5 (2012), Springer Science & Business Media
[28] Heywood, J.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem IV: Error analysis for second-order time discretization, SIAM J. Numer. Anal., 27, 353-384 (1990) · Zbl 0694.76014
[29] Hu, K.; Qiu, W.; Shi, K., Convergence of a B-E based finite element method for MHD models on Lipschitz domains, J. Comput. Appl. Math. (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.