×

A nonlinear Chaikin-based binary subdivision scheme. (English) Zbl 1528.65013

Summary: In this work we introduce and analyze a new nonlinear subdivision scheme based on a nonlinear blending between Chaikin’s subdivision rules and the linear 3-cell subdivision scheme. Our scheme seeks to improve the lack of convergence in the uniform metric of the nonlinear scheme proposed in [S. Amat et al., S\(\vec{\text{e}}\)MA J. 60, 75–92 (2012; Zbl 1260.94005)], where the authors define a cell-average version of the PPH subdivision scheme [S. Amat et al., Found. Comput. Math. 6, No. 2, 193–225 (2006; Zbl 1106.41001)]. The properties of the new scheme are analyzed and its performance is illustrated through numerical examples.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
65D05 Numerical interpolation
Full Text: DOI

References:

[1] Amat, S.; Donat, R.; Liandrat, J.; Trillo, J. C., Analysis of a new nonlinear subdivision scheme. Applications in image processing, Found. Comput. Math., 6, 193-225 (2006) · Zbl 1106.41001
[2] Amat, S.; Liandrat, J.; Ruiz, J.; Trillo, J. C., On a nonlinear cell-average mulitresolution scheme for image compression, SEMA J., 60, 75-92 (2012) · Zbl 1260.94005
[3] Aràndiga, F.; Donat, R., Nonlinear multiscale decompositions: The approach of A. Harten, Numer. Algorithms, 23, 175-216 (2000) · Zbl 0952.65015
[4] Dyn, N.; Oswald, P., Univariate subdivision and multi-scale transforms: The nonlinear case, (DeVore, R.; Kunoth, A., Multiscale, Nonlinear and Adaptive Approximation (2009), Springer: Springer Berlin, Heidelberg) · Zbl 1190.65204
[5] Harizanov, S.; Oswald, P., Stability of nonlinear subdivision and multiscale transforms, Constr. Approx., 31, 359-393 (2010) · Zbl 1225.65028
[6] Harten, A., Multiresolution representation of data: General framework, SIAM J. Numer. Anal., 33, 1205-1256 (1996) · Zbl 0861.65130
[7] Dyn, N., Subdivision schemes in computer-aided geometric design, (Light, W., Advances in Numerical Analysis, Vol. II (1992), Oxford University Press: Oxford University Press New York) · Zbl 0760.65012
[8] Jia, R. Q., Subdivision schemes in L \({}_p\) spaces, Adv. Comput. Math., 3, 309-341 (1995) · Zbl 0833.65148
[9] Oswald, P., Nonlinear multi-scale transforms: L \({}_p\) theory, J. Franklin Inst., 349, 1619-1636 (2012) · Zbl 1319.65014
[10] Kuijt, F.; van Damme, R., Monotonicity preserving interpolatory subdivision schemes, J. Comput. Appl. Math., 101, 203-229 (1999) · Zbl 0947.65007
[11] Aràndiga, F.; Donat, R.; Santagueda, M., The PCHIP subdivision scheme, Appl. Math. Comput., 272, 28-40 (2016) · Zbl 1410.65044
[12] Dyn, N.; Kuijt, F.; Levin, D.; van Damme, R., Convexity preservation of the four-point interpolatory subdivision scheme, Comput. Aided Geom. Design, 16, 789-792 (1999) · Zbl 0994.41018
[13] Donat, R.; López-Ureña, S.; Santagueda, M., A family of non-oscillatory 6-point interpolatory subdivision schemes, Adv. Comput. Math., 43, 849-883 (2017) · Zbl 1373.65008
[14] Aràndiga, F.; Belda, A.; Mulet, P., Weights design for maximal order WENO schemes, J. Sci. Comput., 60, 3, 641-659 (2014) · Zbl 1304.65185
[15] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R., Uniformly high order accurate essentially non-oscillatory schemes, III, J. Comput. Phys., 131, 1, 3-47 (1997) · Zbl 0866.65058
[16] Shu, C.-W., High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51, 82-126 (2009) · Zbl 1160.65330
[17] Aràndiga, F.; Belda, A.; Mulet, P., Point-value WENO multiresolution applications to stable image compression, J. Sci. Comput., 43, 2, 158-182 (2010) · Zbl 1203.94004
[18] Cohen, A.; Dyn, N.; Mateï, B., Quasilinear subdivision schemes with applications to ENO interpolation, Appl. Comput. Harmon. Anal., 15, 89-116 (2003) · Zbl 1046.65071
[19] Amat, S.; Aràndiga, F.; Cohen, A.; Donat, R., Tensor product multiresolution analysis whith error control for compact representation, Signal Process., 82, 587-608 (2002) · Zbl 0994.94001
[20] Aràndiga, F.; Donat, R.; Harten, A., Multiresolution based on weighted averages of the hat function I: linear reconstruction technique, SIAM J. Numer. Anal., 36, 160-203 (1998) · Zbl 0932.42022
[21] Aràndiga, F.; Donat, R., Stability through synchronization in nonlinear multiscale transformation, SIAM J. Sci. Comput., 29, 265-289 (2007) · Zbl 1139.65087
[22] Amat, S.; Dadourian, K.; Liandrat, J.; Ruiz, J.; Trillo, J. C., On a class of L \({}^1\)-stable nonlinear cell-average multiresolution schemes, J. Comput. Appl. Math., 234, 1129-1139 (2010) · Zbl 1189.65318
[23] Amat, S.; Liandrat, J., On the stability of the pph nonlinear multiresolution, Appl. Comput. Harmon. Anal., 18, 2, 198-206 (2005) · Zbl 1077.65138
[24] Amat, S.; Dadourian, K.; Liandrat, J., Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms, Adv. Comput. Math., 34, 253-277 (2011) · Zbl 1252.65027
[25] K. Dadourian, Schemes de subdivision, analyses multiresolutions non-linearies. Applications (Ph.D. Thesis), 2008.; K. Dadourian, Schemes de subdivision, analyses multiresolutions non-linearies. Applications (Ph.D. Thesis), 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.